This documentation is automatically generated by competitive-verifier/competitive-verifier
#include "cp-algo/number_theory/two_squares.hpp"
#ifndef CP_ALGO_NUMBER_THEORY_TWO_SQUARES_HPP
#define CP_ALGO_NUMBER_THEORY_TWO_SQUARES_HPP
#include "euler.hpp"
#include "../util/complex.hpp"
#include <cassert>
#include <utility>
#include <vector>
#include <map>
namespace cp_algo::math {
using gaussint = complex<int64_t>;
gaussint two_squares_prime_any(int64_t p) {
if(p == 2) {
return gaussint(1, 1);
}
assert(p % 4 == 1);
using base = dynamic_modint<>;
return base::with_mod(p, [&](){
base g = primitive_root(p);
int64_t i = bpow(g, (p - 1) / 4).getr();
int64_t q0 = 1, q1 = 0;
int64_t r = i, m = p;
// TODO: Use library contfrac?
do {
int64_t d = r / m;
q0 = std::exchange(q1, q0 + d * q1);
r = std::exchange(m, r % m);
} while(q1 < p / q1);
return gaussint(q0, (base(i) * base(q0)).rem());
});
}
std::vector<gaussint> two_squares_all(int64_t n) {
if(n == 0) {
return {0};
}
auto primes = factorize(n);
std::map<int64_t, int> cnt;
for(auto p: primes) {
cnt[p]++;
}
std::vector<gaussint> res = {1};
for(auto [p, c]: cnt) {
std::vector<gaussint> nres;
if(p % 4 == 3) {
if(c % 2 == 0) {
auto mul = bpow(gaussint(p), c / 2);
for(auto p: res) {
nres.push_back(p * mul);
}
}
} else if(p % 4 == 1) {
gaussint base = two_squares_prime_any(p);
for(int i = 0; i <= c; i++) {
auto mul = bpow(base, i) * bpow(conj(base), c - i);
for(auto p: res) {
nres.push_back(p * mul);
}
}
} else if(p % 4 == 2) {
auto mul = bpow(gaussint(1, 1), c);
for(auto p: res) {
nres.push_back(p * mul);
}
}
res = nres;
}
std::vector<gaussint> nres;
for(auto p: res) {
while(p.real() < 0 || p.imag() < 0) {
p *= gaussint(0, 1);
}
nres.push_back(p);
if(!p.real() || !p.imag()) {
nres.emplace_back(p.imag(), p.real());
}
}
return nres;
}
}
#endif // CP_ALGO_NUMBER_THEORY_TWO_SQUARES_HPP
#line 1 "cp-algo/number_theory/two_squares.hpp"
#line 1 "cp-algo/number_theory/euler.hpp"
#line 1 "cp-algo/number_theory/factorize.hpp"
#line 1 "cp-algo/number_theory/primality.hpp"
#line 1 "cp-algo/number_theory/modint.hpp"
#line 1 "cp-algo/math/common.hpp"
#include <functional>
#include <cstdint>
namespace cp_algo::math {
#ifdef CP_ALGO_MAXN
const int maxn = CP_ALGO_MAXN;
#else
const int maxn = 1 << 19;
#endif
const int magic = 64; // threshold for sizes to run the naive algo
auto bpow(auto const& x, auto n, auto const& one, auto op) {
if(n == 0) {
return one;
} else {
auto t = bpow(x, n / 2, one, op);
t = op(t, t);
if(n % 2) {
t = op(t, x);
}
return t;
}
}
auto bpow(auto x, auto n, auto ans) {
return bpow(x, n, ans, std::multiplies{});
}
template<typename T>
T bpow(T const& x, auto n) {
return bpow(x, n, T(1));
}
}
#line 4 "cp-algo/number_theory/modint.hpp"
#include <iostream>
#include <cassert>
namespace cp_algo::math {
inline constexpr auto inv2(auto x) {
assert(x % 2);
std::make_unsigned_t<decltype(x)> y = 1;
while(y * x != 1) {
y *= 2 - x * y;
}
return y;
}
template<typename modint, typename _Int>
struct modint_base {
using Int = _Int;
using UInt = std::make_unsigned_t<Int>;
static constexpr size_t bits = sizeof(Int) * 8;
using Int2 = std::conditional_t<bits <= 32, int64_t, __int128_t>;
using UInt2 = std::conditional_t<bits <= 32, uint64_t, __uint128_t>;
static Int mod() {
return modint::mod();
}
static UInt imod() {
return modint::imod();
}
static UInt2 pw128() {
return modint::pw128();
}
static UInt m_reduce(UInt2 ab) {
if(mod() % 2 == 0) [[unlikely]] {
return UInt(ab % mod());
} else {
UInt2 m = (UInt)ab * imod();
return UInt((ab + m * mod()) >> bits);
}
}
static UInt m_transform(UInt a) {
if(mod() % 2 == 0) [[unlikely]] {
return a;
} else {
return m_reduce(a * pw128());
}
}
modint_base(): r(0) {}
modint_base(Int2 rr): r(UInt(rr % mod())) {
r = std::min(r, r + mod());
r = m_transform(r);
}
modint inv() const {
return bpow(to_modint(), mod() - 2);
}
modint operator - () const {
modint neg;
neg.r = std::min(-r, 2 * mod() - r);
return neg;
}
modint& operator /= (const modint &t) {
return to_modint() *= t.inv();
}
modint& operator *= (const modint &t) {
r = m_reduce((UInt2)r * t.r);
return to_modint();
}
modint& operator += (const modint &t) {
r += t.r; r = std::min(r, r - 2 * mod());
return to_modint();
}
modint& operator -= (const modint &t) {
r -= t.r; r = std::min(r, r + 2 * mod());
return to_modint();
}
modint operator + (const modint &t) const {return modint(to_modint()) += t;}
modint operator - (const modint &t) const {return modint(to_modint()) -= t;}
modint operator * (const modint &t) const {return modint(to_modint()) *= t;}
modint operator / (const modint &t) const {return modint(to_modint()) /= t;}
// Why <=> doesn't work?..
auto operator == (const modint_base &t) const {return getr() == t.getr();}
auto operator != (const modint_base &t) const {return getr() != t.getr();}
auto operator <= (const modint_base &t) const {return getr() <= t.getr();}
auto operator >= (const modint_base &t) const {return getr() >= t.getr();}
auto operator < (const modint_base &t) const {return getr() < t.getr();}
auto operator > (const modint_base &t) const {return getr() > t.getr();}
Int rem() const {
UInt R = getr();
return 2 * R > (UInt)mod() ? R - mod() : R;
}
// Only use if you really know what you're doing!
UInt modmod() const {return (UInt)8 * mod() * mod();};
void add_unsafe(UInt t) {r += t;}
void pseudonormalize() {r = std::min(r, r - modmod());}
modint const& normalize() {
if(r >= (UInt)mod()) {
r %= mod();
}
return to_modint();
}
void setr(UInt rr) {r = m_transform(rr);}
UInt getr() const {
UInt res = m_reduce(r);
return std::min(res, res - mod());
}
void setr_direct(UInt rr) {r = rr;}
UInt getr_direct() const {return r;}
private:
UInt r;
modint& to_modint() {return static_cast<modint&>(*this);}
modint const& to_modint() const {return static_cast<modint const&>(*this);}
};
template<typename modint>
concept modint_type = std::is_base_of_v<modint_base<modint, typename modint::Int>, modint>;
template<modint_type modint>
std::istream& operator >> (std::istream &in, modint &x) {
typename modint::UInt r;
auto &res = in >> r;
x.setr(r);
return res;
}
template<modint_type modint>
std::ostream& operator << (std::ostream &out, modint const& x) {
return out << x.getr();
}
template<auto m>
struct modint: modint_base<modint<m>, decltype(m)> {
using Base = modint_base<modint<m>, decltype(m)>;
using Base::Base;
static constexpr Base::UInt im = m % 2 ? inv2(-m) : 0;
static constexpr Base::UInt r2 = (typename Base::UInt2)(-1) % m + 1;
static constexpr Base::Int mod() {return m;}
static constexpr Base::UInt imod() {return im;}
static constexpr Base::UInt2 pw128() {return r2;}
};
template<typename Int = int64_t>
struct dynamic_modint: modint_base<dynamic_modint<Int>, Int> {
using Base = modint_base<dynamic_modint<Int>, Int>;
using Base::Base;
static Int mod() {return m;}
static Base::UInt imod() {return im;}
static Base::UInt2 pw128() {return r2;}
static void switch_mod(Int nm) {
m = nm;
im = m % 2 ? inv2(-m) : 0;
r2 = static_cast<Base::UInt>(static_cast<Base::UInt2>(-1) % m + 1);
}
// Wrapper for temp switching
auto static with_mod(Int tmp, auto callback) {
struct scoped {
Int prev = mod();
~scoped() {switch_mod(prev);}
} _;
switch_mod(tmp);
return callback();
}
private:
static thread_local Int m;
static thread_local Base::UInt im, r2;
};
template<typename Int>
Int thread_local dynamic_modint<Int>::m = 1;
template<typename Int>
dynamic_modint<Int>::Base::UInt thread_local dynamic_modint<Int>::im = -1;
template<typename Int>
dynamic_modint<Int>::Base::UInt thread_local dynamic_modint<Int>::r2 = 0;
}
#line 4 "cp-algo/number_theory/primality.hpp"
#include <algorithm>
#include <bit>
namespace cp_algo::math {
// https://en.wikipedia.org/wiki/Miller–Rabin_primality_test
bool is_prime(uint64_t m) {
if(m == 1 || m % 2 == 0) {
return m == 2;
}
// m - 1 = 2^s * d
int s = std::countr_zero(m - 1);
auto d = (m - 1) >> s;
using base = dynamic_modint<>;
auto test = [&](base x) {
x = bpow(x, d);
if(std::abs(x.rem()) <= 1) {
return true;
}
for(int i = 1; i < s && x != -1; i++) {
x *= x;
}
return x == -1;
};
return base::with_mod(m, [&](){
// Works for all m < 2^64: https://miller-rabin.appspot.com
return std::ranges::all_of(std::array{
2, 325, 9375, 28178, 450775, 9780504, 1795265022
}, test);
});
}
}
#line 1 "cp-algo/random/rng.hpp"
#include <chrono>
#include <random>
namespace cp_algo::random {
uint64_t rng() {
static std::mt19937_64 rng(
std::chrono::steady_clock::now().time_since_epoch().count()
);
return rng();
}
}
#line 5 "cp-algo/number_theory/factorize.hpp"
#include <generator>
namespace cp_algo::math {
// https://en.wikipedia.org/wiki/Pollard%27s_rho_algorithm
auto proper_divisor(uint64_t m) {
using base = dynamic_modint<>;
return m % 2 == 0 ? 2 : base::with_mod(m, [&]() {
base t = random::rng();
auto f = [&](auto x) {
return x * x + t;
};
base x, y;
base g = 1;
while(g == 1) {
for(int i = 0; i < 64; i++) {
x = f(x);
y = f(f(y));
if(x == y) [[unlikely]] {
t = random::rng();
x = y = 0;
} else {
base t = g * (x - y);
g = t == 0 ? g : t;
}
}
g = std::gcd(g.getr(), m);
}
return g.getr();
});
}
std::generator<uint64_t> factorize(uint64_t m) {
if(is_prime(m)) {
co_yield m;
} else if(m > 1) {
auto g = proper_divisor(m);
co_yield std::ranges::elements_of(factorize(g));
co_yield std::ranges::elements_of(factorize(m / g));
}
}
}
#line 4 "cp-algo/number_theory/euler.hpp"
namespace cp_algo::math {
int64_t euler_phi(int64_t m) {
auto primes = to<std::vector>(factorize(m));
std::ranges::sort(primes);
auto [from, to] = std::ranges::unique(primes);
primes.erase(from, to);
int64_t ans = m;
for(auto it: primes) {
ans -= ans / it;
}
return ans;
}
template<modint_type base>
int64_t period(base x) {
auto ans = euler_phi(base::mod());
base x0 = bpow(x, ans);
for(auto t: factorize(ans)) {
while(ans % t == 0 && x0 * bpow(x, ans / t) == x0) {
ans /= t;
}
}
return ans;
}
int64_t primitive_root(int64_t p) {
using base = dynamic_modint<>;
return base::with_mod(p, [p](){
base t = 1;
while(period(t) != p - 1) {
t = random::rng();
}
return t.getr();
});
}
}
#line 1 "cp-algo/util/complex.hpp"
#include <cmath>
namespace cp_algo {
// Custom implementation, since std::complex is UB on non-floating types
template<typename T>
struct complex {
using value_type = T;
T x, y;
constexpr complex() {}
constexpr complex(T x): x(x), y(0) {}
constexpr complex(T x, T y): x(x), y(y) {}
complex& operator *= (T t) {x *= t; y *= t; return *this;}
complex& operator /= (T t) {x /= t; y /= t; return *this;}
complex operator * (T t) const {return complex(*this) *= t;}
complex operator / (T t) const {return complex(*this) /= t;}
complex& operator += (complex t) {x += t.x; y += t.y; return *this;}
complex& operator -= (complex t) {x -= t.x; y -= t.y; return *this;}
complex operator * (complex t) const {return {x * t.x - y * t.y, x * t.y + y * t.x};}
complex operator / (complex t) const {return *this * t.conj() / t.norm();}
complex operator + (complex t) const {return complex(*this) += t;}
complex operator - (complex t) const {return complex(*this) -= t;}
complex& operator *= (complex t) {return *this = *this * t;}
complex& operator /= (complex t) {return *this = *this / t;}
complex operator - () const {return {-x, -y};}
complex conj() const {return {x, -y};}
T norm() const {return x * x + y * y;}
T abs() const {return std::sqrt(norm());}
T real() const {return x;}
T imag() const {return y;}
T& real() {return x;}
T& imag() {return y;}
static complex polar(T r, T theta) {return {r * cos(theta), r * sin(theta)};}
auto operator <=> (complex const& t) const = default;
};
template<typename T>
complex<T> operator * (auto x, complex<T> y) {return y *= x;}
template<typename T> complex<T> conj(complex<T> x) {return x.conj();}
template<typename T> T norm(complex<T> x) {return x.norm();}
template<typename T> T abs(complex<T> x) {return x.abs();}
template<typename T> T& real(complex<T> &x) {return x.real();}
template<typename T> T& imag(complex<T> &x) {return x.imag();}
template<typename T> T real(complex<T> const& x) {return x.real();}
template<typename T> T imag(complex<T> const& x) {return x.imag();}
template<typename T> complex<T> polar(T r, T theta) {return complex<T>::polar(r, theta);}
}
#line 6 "cp-algo/number_theory/two_squares.hpp"
#include <utility>
#include <vector>
#include <map>
namespace cp_algo::math {
using gaussint = complex<int64_t>;
gaussint two_squares_prime_any(int64_t p) {
if(p == 2) {
return gaussint(1, 1);
}
assert(p % 4 == 1);
using base = dynamic_modint<>;
return base::with_mod(p, [&](){
base g = primitive_root(p);
int64_t i = bpow(g, (p - 1) / 4).getr();
int64_t q0 = 1, q1 = 0;
int64_t r = i, m = p;
// TODO: Use library contfrac?
do {
int64_t d = r / m;
q0 = std::exchange(q1, q0 + d * q1);
r = std::exchange(m, r % m);
} while(q1 < p / q1);
return gaussint(q0, (base(i) * base(q0)).rem());
});
}
std::vector<gaussint> two_squares_all(int64_t n) {
if(n == 0) {
return {0};
}
auto primes = factorize(n);
std::map<int64_t, int> cnt;
for(auto p: primes) {
cnt[p]++;
}
std::vector<gaussint> res = {1};
for(auto [p, c]: cnt) {
std::vector<gaussint> nres;
if(p % 4 == 3) {
if(c % 2 == 0) {
auto mul = bpow(gaussint(p), c / 2);
for(auto p: res) {
nres.push_back(p * mul);
}
}
} else if(p % 4 == 1) {
gaussint base = two_squares_prime_any(p);
for(int i = 0; i <= c; i++) {
auto mul = bpow(base, i) * bpow(conj(base), c - i);
for(auto p: res) {
nres.push_back(p * mul);
}
}
} else if(p % 4 == 2) {
auto mul = bpow(gaussint(1, 1), c);
for(auto p: res) {
nres.push_back(p * mul);
}
}
res = nres;
}
std::vector<gaussint> nres;
for(auto p: res) {
while(p.real() < 0 || p.imag() < 0) {
p *= gaussint(0, 1);
}
nres.push_back(p);
if(!p.real() || !p.imag()) {
nres.emplace_back(p.imag(), p.real());
}
}
return nres;
}
}