This documentation is automatically generated by competitive-verifier/competitive-verifier
#include "cp-algo/tree/ascending_dfs.hpp"#ifndef CP_ALGO_TREE_ASCENDING_DFS_HPP
#define CP_ALGO_TREE_ASCENDING_DFS_HPP
#include "../graph/base.hpp"
#include <cassert>
#include <vector>
#include <ranges>
namespace cp_algo::graph {
// Generic ascending DFS that repeatedly peels leaves (degree 1).
// `next(v)` must return the unique incident edge of `v` when degree[v] == 1.
template<undirected_graph_type graph>
void ascending_dfs(graph const& tree, auto °ree, auto &&next, auto &&callback, node_index root) {
for (auto v : tree.nodes()) {
while (degree[v] == 1) {
edge_index ep = next(v);
callback(v, ep);
degree[v]--;
v = tree.edge(ep).traverse(v);
degree[v]--;
}
}
callback(root, -1);
}
// XOR-based DFS that tracks the remaining incident edge via XOR.
template<undirected_graph_type graph>
big_vector<edge_index> xor_dfs(graph const& tree, auto &&callback, node_index root = 0) {
big_vector<edge_index> neig_xor(tree.n());
big_vector<int> degree(tree.n());
for (auto v : tree.nodes()) {
degree[v] = (int)std::ranges::distance(tree.outgoing(v));
}
degree[root] = 0;
for (auto v : tree.nodes()) {
for (auto e : tree.outgoing(v)) {
neig_xor[v] ^= e;
}
}
neig_xor[root] ^= edge_index(-1);
ascending_dfs(tree, degree, [&](auto v) {
edge_index ep = neig_xor[v];
neig_xor[tree.edge(ep).traverse(v)] ^= ep;
return ep;
}, callback, root);
return neig_xor; // parent edge for each node (root holds -1)
}
// DFS that uses a precomputed parent-edge array.
template<undirected_graph_type graph>
void parent_dfs(graph const& tree, auto const& parent, auto &&callback) {
std::vector<int> degree(tree.n());
node_index root = -1;
for (auto [v, e] : parent | std::views::enumerate) {
if (e != -1) {
degree[v]++;
degree[tree.edge(e).traverse(node_index(v))]++;
} else {
root = node_index(v);
}
}
assert(root != -1);
degree[root] = 0;
ascending_dfs(tree, degree, [&](auto v) {
return parent[v];
}, callback, root);
}
}
#endif // CP_ALGO_TREE_ASCENDING_DFS_HPP
#line 1 "cp-algo/tree/ascending_dfs.hpp"
#line 1 "cp-algo/graph/base.hpp"
#line 1 "cp-algo/graph/edge_types.hpp"
#include <iostream>
#include <cstdint>
namespace cp_algo::graph {
using node_index = int;
struct edge_base {
int xor_nodes;
edge_base() {}
edge_base(node_index from, node_index to): xor_nodes(from ^ to) {}
// Given one endpoint, return the other
node_index traverse(node_index from) const {
return xor_nodes ^ from;
}
static auto read(node_index v0 = 0) {
node_index u, v;
std::cin >> u >> v;
u -= v0;
v -= v0;
return std::pair{u, edge_base(u, v)};
}
};
struct weighted_edge: edge_base {
int64_t w;
weighted_edge() {}
weighted_edge(node_index from, node_index to, int64_t w): edge_base(from, to), w(w) {}
static auto read(node_index v0 = 0) {
auto [u, e] = edge_base::read(v0);
int64_t w;
std::cin >> w;
return std::pair{u, weighted_edge(u, e.traverse(u), w)};
}
};
template<typename edge>
concept edge_type = std::is_base_of_v<edge_base, edge>;
template<typename edge>
concept weighted_edge_type = std::is_base_of_v<weighted_edge, edge>;
}
#line 1 "cp-algo/graph/concepts.hpp"
#line 4 "cp-algo/graph/concepts.hpp"
#include <type_traits>
namespace cp_algo::graph {
// Shared graph mode enum for all graph headers
enum graph_mode { directed, undirected };
// Traits: true for types that expose `edge_t` and static `mode`
template<typename T, typename = void>
struct graph_traits : std::false_type {};
template<typename T>
struct graph_traits<T, std::void_t<typename T::edge_t, decltype(T::mode)>> : std::true_type {
using edge_t = typename T::edge_t;
static constexpr auto mode = T::mode;
static constexpr bool is_directed = mode == directed;
static constexpr bool is_undirected = mode == undirected;
static constexpr bool is_weighted = weighted_edge_type<edge_t>;
};
// Concepts
template<typename G>
concept graph_type = graph_traits<G>::value;
template<typename G>
concept digraph_type = graph_type<G> && graph_traits<G>::is_directed;
template<typename G>
concept undirected_graph_type = graph_type<G> && graph_traits<G>::is_undirected;
template<typename G>
concept weighted_graph_type = graph_type<G> && graph_traits<G>::is_weighted;
template<typename G>
concept weighted_digraph_type = digraph_type<G> && graph_traits<G>::is_weighted;
template<typename G>
concept weighted_undirected_graph_type = undirected_graph_type<G> && graph_traits<G>::is_weighted;
}
#line 1 "cp-algo/structures/stack_union.hpp"
#line 1 "cp-algo/util/big_alloc.hpp"
#include <map>
#include <deque>
#include <vector>
#include <string>
#include <cstddef>
#line 10 "cp-algo/util/big_alloc.hpp"
// Single macro to detect POSIX platforms (Linux, Unix, macOS)
#if defined(__linux__) || defined(__unix__) || (defined(__APPLE__) && defined(__MACH__))
# define CP_ALGO_USE_MMAP 1
# include <sys/mman.h>
#else
# define CP_ALGO_USE_MMAP 0
#endif
namespace cp_algo {
template <typename T, std::size_t Align = 32>
class big_alloc {
static_assert( Align >= alignof(void*), "Align must be at least pointer-size");
static_assert(std::popcount(Align) == 1, "Align must be a power of two");
public:
using value_type = T;
template <class U> struct rebind { using other = big_alloc<U, Align>; };
constexpr bool operator==(const big_alloc&) const = default;
constexpr bool operator!=(const big_alloc&) const = default;
big_alloc() noexcept = default;
template <typename U, std::size_t A>
big_alloc(const big_alloc<U, A>&) noexcept {}
[[nodiscard]] T* allocate(std::size_t n) {
std::size_t padded = round_up(n * sizeof(T));
std::size_t align = std::max<std::size_t>(alignof(T), Align);
#if CP_ALGO_USE_MMAP
if (padded >= MEGABYTE) {
void* raw = mmap(nullptr, padded,
PROT_READ | PROT_WRITE,
MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
madvise(raw, padded, MADV_HUGEPAGE);
madvise(raw, padded, MADV_POPULATE_WRITE);
return static_cast<T*>(raw);
}
#endif
return static_cast<T*>(::operator new(padded, std::align_val_t(align)));
}
void deallocate(T* p, std::size_t n) noexcept {
if (!p) return;
std::size_t padded = round_up(n * sizeof(T));
std::size_t align = std::max<std::size_t>(alignof(T), Align);
#if CP_ALGO_USE_MMAP
if (padded >= MEGABYTE) { munmap(p, padded); return; }
#endif
::operator delete(p, padded, std::align_val_t(align));
}
private:
static constexpr std::size_t MEGABYTE = 1 << 20;
static constexpr std::size_t round_up(std::size_t x) noexcept {
return (x + Align - 1) / Align * Align;
}
};
template<typename T>
using big_vector = std::vector<T, big_alloc<T>>;
template<typename T>
using big_basic_string = std::basic_string<T, std::char_traits<T>, big_alloc<T>>;
template<typename T>
using big_deque = std::deque<T, big_alloc<T>>;
template<typename Key, typename Value, typename Compare = std::less<Key>>
using big_map = std::map<Key, Value, Compare, big_alloc<std::pair<const Key, Value>>>;
using big_string = big_basic_string<char>;
}
#line 5 "cp-algo/structures/stack_union.hpp"
#include <iterator>
#include <ranges>
namespace cp_algo::structures {
template<class datatype>
struct stack_union {
stack_union(int n = 0): head(n), next(1), data(1) {}
void push(int v, datatype const& vdata) {
next.push_back(head[v]);
head[v] = (int)std::size(next) - 1;
data.push_back(vdata);
}
template<typename... Args>
void emplace(int v, Args&&... vdata) {
next.push_back(head[v]);
head[v] = (int)std::size(next) - 1;
data.emplace_back(std::forward<Args>(vdata)...);
}
void reserve(int m) {
data.reserve(m);
next.reserve(m);
}
size_t size() const {return std::size(head);}
size_t nodes() const {return std::size(data);}
template<typename Su>
struct _iterator {
using value_type = std::conditional_t<std::is_const_v<Su>, const datatype, datatype>;
using difference_type = std::ptrdiff_t;
Su* su = nullptr;
int sv = 0;
value_type& operator*() const { return su->data[sv]; }
_iterator& operator++() {
sv = su->next[sv];
return *this;
}
_iterator operator++(int) { auto tmp = *this; ++*this; return tmp; }
friend bool operator==(_iterator const& it, std::default_sentinel_t) {
return it.sv == 0;
}
};
using iterator = _iterator<stack_union<datatype>>;
using const_iterator = _iterator<const stack_union<datatype>>;
auto operator[](this auto&& self, int v) {
using Iter = _iterator<std::remove_reference_t<decltype(self)>>;
return std::ranges::subrange(Iter{&self, self.head[v]}, std::default_sentinel);
}
big_vector<int> head, next;
big_vector<datatype> data;
};
}
#line 7 "cp-algo/graph/base.hpp"
namespace cp_algo::graph {
using edge_index = int;
template<edge_type _edge_t = edge_base, graph_mode _mode = undirected>
struct graph {
using edge_t = _edge_t;
static constexpr auto mode = _mode;
using incidence_list = structures::stack_union<edge_index>;
graph(int n, int v0 = 0): v0(v0), adj(n) {}
graph transpose() const {
static_assert(mode == directed, "transpose is only defined for directed graphs");
graph<edge_t, mode> gt(n(), v0);
for(auto v: nodes()) {
for(auto e: outgoing(v)) {
gt.add_edge(edge(e).traverse(v), edge(e));
}
}
return gt;
}
edge_index add_edge(node_index u, edge_t e) {
edge_index idx = (edge_index)size(E);
E.push_back(e);
adj.push(u, idx);
if constexpr (mode == undirected) {
adj.push(e.traverse(u), idx);
}
return idx;
}
edge_index add_edge(node_index u, auto... Args) {
return add_edge(u, edge_t(u, Args...));
}
void read_edges(node_index m) {
adj.reserve(mode == undirected ? 2 * m : m);
for(edge_index i = 0; i < m; i++) {
auto [u, e] = edge_t::read(v0);
add_edge(u, e);
}
}
auto outgoing(node_index v) const {return adj[v];}
auto edges() const {return E | std::views::all;}
auto nodes() const {return std::views::iota(node_index(0), n());}
auto edge_indices() const {return std::views::iota(edge_index(0), m());}
auto&& incidence_lists(this auto&& self) {return self.adj;}
auto&& edge(this auto&& self, edge_index e) {return self.E[e];}
node_index n() const {return (node_index)incidence_lists().size();}
edge_index m() const {return (edge_index)edges().size();}
private:
node_index v0;
big_vector<edge_t> E;
incidence_list adj;
};
// aliases for most standard cases
template<edge_type edge_t = edge_base>
using digraph = graph<edge_t, directed>;
template<weighted_edge_type edge_t = weighted_edge, graph_mode mode = undirected>
using weighted_graph = graph<edge_t, mode>;
template<weighted_edge_type edge_t = weighted_edge>
using weighted_digraph = digraph<edge_t>;
}
#line 5 "cp-algo/tree/ascending_dfs.hpp"
#include <cassert>
#line 8 "cp-algo/tree/ascending_dfs.hpp"
namespace cp_algo::graph {
// Generic ascending DFS that repeatedly peels leaves (degree 1).
// `next(v)` must return the unique incident edge of `v` when degree[v] == 1.
template<undirected_graph_type graph>
void ascending_dfs(graph const& tree, auto °ree, auto &&next, auto &&callback, node_index root) {
for (auto v : tree.nodes()) {
while (degree[v] == 1) {
edge_index ep = next(v);
callback(v, ep);
degree[v]--;
v = tree.edge(ep).traverse(v);
degree[v]--;
}
}
callback(root, -1);
}
// XOR-based DFS that tracks the remaining incident edge via XOR.
template<undirected_graph_type graph>
big_vector<edge_index> xor_dfs(graph const& tree, auto &&callback, node_index root = 0) {
big_vector<edge_index> neig_xor(tree.n());
big_vector<int> degree(tree.n());
for (auto v : tree.nodes()) {
degree[v] = (int)std::ranges::distance(tree.outgoing(v));
}
degree[root] = 0;
for (auto v : tree.nodes()) {
for (auto e : tree.outgoing(v)) {
neig_xor[v] ^= e;
}
}
neig_xor[root] ^= edge_index(-1);
ascending_dfs(tree, degree, [&](auto v) {
edge_index ep = neig_xor[v];
neig_xor[tree.edge(ep).traverse(v)] ^= ep;
return ep;
}, callback, root);
return neig_xor; // parent edge for each node (root holds -1)
}
// DFS that uses a precomputed parent-edge array.
template<undirected_graph_type graph>
void parent_dfs(graph const& tree, auto const& parent, auto &&callback) {
std::vector<int> degree(tree.n());
node_index root = -1;
for (auto [v, e] : parent | std::views::enumerate) {
if (e != -1) {
degree[v]++;
degree[tree.edge(e).traverse(node_index(v))]++;
} else {
root = node_index(v);
}
}
assert(root != -1);
degree[root] = 0;
ascending_dfs(tree, degree, [&](auto v) {
return parent[v];
}, callback, root);
}
}
#ifndef CP_ALGO_TREE_ASCENDING_DFS_HPP
#define CP_ALGO_TREE_ASCENDING_DFS_HPP
#include "../graph/base.hpp"
#include <cassert>
#include <vector>
#include <ranges>
namespace cp_algo::graph{template<undirected_graph_type graph>void ascending_dfs(graph const&tree,auto°ree,auto&&next,auto&&callback,node_index root){for(auto v:tree.nodes()){while(degree[v]==1){edge_index ep=next(v);callback(v,ep);degree[v]--;v=tree.edge(ep).traverse(v);degree[v]--;}}callback(root,-1);}template<undirected_graph_type graph>big_vector<edge_index>xor_dfs(graph const&tree,auto&&callback,node_index root=0){big_vector<edge_index>neig_xor(tree.n());big_vector<int>degree(tree.n());for(auto v:tree.nodes()){degree[v]=(int)std::ranges::distance(tree.outgoing(v));}degree[root]=0;for(auto v:tree.nodes()){for(auto e:tree.outgoing(v)){neig_xor[v]^=e;}}neig_xor[root]^=edge_index(-1);ascending_dfs(tree,degree,[&](auto v){edge_index ep=neig_xor[v];neig_xor[tree.edge(ep).traverse(v)]^=ep;return ep;},callback,root);return neig_xor;}template<undirected_graph_type graph>void parent_dfs(graph const&tree,auto const&parent,auto&&callback){std::vector<int>degree(tree.n());node_index root=-1;for(auto[v,e]:parent|std::views::enumerate){if(e!=-1){degree[v]++;degree[tree.edge(e).traverse(node_index(v))]++;}else{root=node_index(v);}}assert(root!=-1);degree[root]=0;ascending_dfs(tree,degree,[&](auto v){return parent[v];},callback,root);}}
#endif
#line 1 "cp-algo/tree/ascending_dfs.hpp"
#line 1 "cp-algo/graph/base.hpp"
#line 1 "cp-algo/graph/edge_types.hpp"
#include <iostream>
#include <cstdint>
namespace cp_algo::graph{using node_index=int;struct edge_base{int xor_nodes;edge_base(){}edge_base(node_index from,node_index to):xor_nodes(from^to){}node_index traverse(node_index from)const{return xor_nodes^from;}static auto read(node_index v0=0){node_index u,v;std::cin>>u>>v;u-=v0;v-=v0;return std::pair{u,edge_base(u,v)};}};struct weighted_edge:edge_base{int64_t w;weighted_edge(){}weighted_edge(node_index from,node_index to,int64_t w):edge_base(from,to),w(w){}static auto read(node_index v0=0){auto[u,e]=edge_base::read(v0);int64_t w;std::cin>>w;return std::pair{u,weighted_edge(u,e.traverse(u),w)};}};template<typename edge>concept edge_type=std::is_base_of_v<edge_base,edge>;template<typename edge>concept weighted_edge_type=std::is_base_of_v<weighted_edge,edge>;}
#line 1 "cp-algo/graph/concepts.hpp"
#line 4 "cp-algo/graph/concepts.hpp"
#include <type_traits>
namespace cp_algo::graph{enum graph_mode{directed,undirected};template<typename T,typename=void>struct graph_traits:std::false_type{};template<typename T>struct graph_traits<T,std::void_t<typename T::edge_t,decltype(T::mode)>>:std::true_type{using edge_t=typename T::edge_t;static constexpr auto mode=T::mode;static constexpr bool is_directed=mode==directed;static constexpr bool is_undirected=mode==undirected;static constexpr bool is_weighted=weighted_edge_type<edge_t>;};template<typename G>concept graph_type=graph_traits<G>::value;template<typename G>concept digraph_type=graph_type<G>&&graph_traits<G>::is_directed;template<typename G>concept undirected_graph_type=graph_type<G>&&graph_traits<G>::is_undirected;template<typename G>concept weighted_graph_type=graph_type<G>&&graph_traits<G>::is_weighted;template<typename G>concept weighted_digraph_type=digraph_type<G>&&graph_traits<G>::is_weighted;template<typename G>concept weighted_undirected_graph_type=undirected_graph_type<G>&&graph_traits<G>::is_weighted;}
#line 1 "cp-algo/structures/stack_union.hpp"
#line 1 "cp-algo/util/big_alloc.hpp"
#include <map>
#include <deque>
#include <vector>
#include <string>
#include <cstddef>
#line 10 "cp-algo/util/big_alloc.hpp"
#if defined(__linux__) || defined(__unix__) || (defined(__APPLE__) && defined(__MACH__))
# define CP_ALGO_USE_MMAP 1
# include <sys/mman.h>
#else
# define CP_ALGO_USE_MMAP 0
#endif
namespace cp_algo{template<typename T,std::size_t Align=32>class big_alloc{static_assert(Align>=alignof(void*),"Align must be at least pointer-size");static_assert(std::popcount(Align)==1,"Align must be a power of two");public:using value_type=T;template<class U>struct rebind{using other=big_alloc<U,Align>;};constexpr bool operator==(const big_alloc&)const=default;constexpr bool operator!=(const big_alloc&)const=default;big_alloc()noexcept=default;template<typename U,std::size_t A>big_alloc(const big_alloc<U,A>&)noexcept{}[[nodiscard]]T*allocate(std::size_t n){std::size_t padded=round_up(n*sizeof(T));std::size_t align=std::max<std::size_t>(alignof(T),Align);
#if CP_ALGO_USE_MMAP
if(padded>=MEGABYTE){void*raw=mmap(nullptr,padded,PROT_READ|PROT_WRITE,MAP_PRIVATE|MAP_ANONYMOUS,-1,0);madvise(raw,padded,MADV_HUGEPAGE);madvise(raw,padded,MADV_POPULATE_WRITE);return static_cast<T*>(raw);}
#endif
return static_cast<T*>(::operator new(padded,std::align_val_t(align)));}void deallocate(T*p,std::size_t n)noexcept{if(!p)return;std::size_t padded=round_up(n*sizeof(T));std::size_t align=std::max<std::size_t>(alignof(T),Align);
#if CP_ALGO_USE_MMAP
if(padded>=MEGABYTE){munmap(p,padded);return;}
#endif
::operator delete(p,padded,std::align_val_t(align));}private:static constexpr std::size_t MEGABYTE=1<<20;static constexpr std::size_t round_up(std::size_t x)noexcept{return(x+Align-1)/Align*Align;}};template<typename T>using big_vector=std::vector<T,big_alloc<T>>;template<typename T>using big_basic_string=std::basic_string<T,std::char_traits<T>,big_alloc<T>>;template<typename T>using big_deque=std::deque<T,big_alloc<T>>;template<typename Key,typename Value,typename Compare=std::less<Key>>using big_map=std::map<Key,Value,Compare,big_alloc<std::pair<const Key,Value>>>;using big_string=big_basic_string<char>;}
#line 5 "cp-algo/structures/stack_union.hpp"
#include <iterator>
#include <ranges>
namespace cp_algo::structures{template<class datatype>struct stack_union{stack_union(int n=0):head(n),next(1),data(1){}void push(int v,datatype const&vdata){next.push_back(head[v]);head[v]=(int)std::size(next)-1;data.push_back(vdata);}template<typename... Args>void emplace(int v,Args&&... vdata){next.push_back(head[v]);head[v]=(int)std::size(next)-1;data.emplace_back(std::forward<Args>(vdata)...);}void reserve(int m){data.reserve(m);next.reserve(m);}size_t size()const{return std::size(head);}size_t nodes()const{return std::size(data);}template<typename Su>struct _iterator{using value_type=std::conditional_t<std::is_const_v<Su>,const datatype,datatype>;using difference_type=std::ptrdiff_t;Su*su=nullptr;int sv=0;value_type&operator*()const{return su->data[sv];}_iterator&operator++(){sv=su->next[sv];return*this;}_iterator operator++(int){auto tmp=*this;++*this;return tmp;}friend bool operator==(_iterator const&it,std::default_sentinel_t){return it.sv==0;}};using iterator=_iterator<stack_union<datatype>>;using const_iterator=_iterator<const stack_union<datatype>>;auto operator[](this auto&&self,int v){using Iter=_iterator<std::remove_reference_t<decltype(self)>>;return std::ranges::subrange(Iter{&self,self.head[v]},std::default_sentinel);}big_vector<int>head,next;big_vector<datatype>data;};}
#line 7 "cp-algo/graph/base.hpp"
namespace cp_algo::graph{using edge_index=int;template<edge_type _edge_t=edge_base,graph_mode _mode=undirected>struct graph{using edge_t=_edge_t;static constexpr auto mode=_mode;using incidence_list=structures::stack_union<edge_index>;graph(int n,int v0=0):v0(v0),adj(n){}graph transpose()const{static_assert(mode==directed,"transpose is only defined for directed graphs");graph<edge_t,mode>gt(n(),v0);for(auto v:nodes()){for(auto e:outgoing(v)){gt.add_edge(edge(e).traverse(v),edge(e));}}return gt;}edge_index add_edge(node_index u,edge_t e){edge_index idx=(edge_index)size(E);E.push_back(e);adj.push(u,idx);if constexpr(mode==undirected){adj.push(e.traverse(u),idx);}return idx;}edge_index add_edge(node_index u,auto... Args){return add_edge(u,edge_t(u,Args...));}void read_edges(node_index m){adj.reserve(mode==undirected?2*m:m);for(edge_index i=0;i<m;i++){auto[u,e]=edge_t::read(v0);add_edge(u,e);}}auto outgoing(node_index v)const{return adj[v];}auto edges()const{return E|std::views::all;}auto nodes()const{return std::views::iota(node_index(0),n());}auto edge_indices()const{return std::views::iota(edge_index(0),m());}auto&&incidence_lists(this auto&&self){return self.adj;}auto&&edge(this auto&&self,edge_index e){return self.E[e];}node_index n()const{return(node_index)incidence_lists().size();}edge_index m()const{return(edge_index)edges().size();}private:node_index v0;big_vector<edge_t>E;incidence_list adj;};template<edge_type edge_t=edge_base>using digraph=graph<edge_t,directed>;template<weighted_edge_type edge_t=weighted_edge,graph_mode mode=undirected>using weighted_graph=graph<edge_t,mode>;template<weighted_edge_type edge_t=weighted_edge>using weighted_digraph=digraph<edge_t>;}
#line 5 "cp-algo/tree/ascending_dfs.hpp"
#include <cassert>
#line 8 "cp-algo/tree/ascending_dfs.hpp"
namespace cp_algo::graph{template<undirected_graph_type graph>void ascending_dfs(graph const&tree,auto°ree,auto&&next,auto&&callback,node_index root){for(auto v:tree.nodes()){while(degree[v]==1){edge_index ep=next(v);callback(v,ep);degree[v]--;v=tree.edge(ep).traverse(v);degree[v]--;}}callback(root,-1);}template<undirected_graph_type graph>big_vector<edge_index>xor_dfs(graph const&tree,auto&&callback,node_index root=0){big_vector<edge_index>neig_xor(tree.n());big_vector<int>degree(tree.n());for(auto v:tree.nodes()){degree[v]=(int)std::ranges::distance(tree.outgoing(v));}degree[root]=0;for(auto v:tree.nodes()){for(auto e:tree.outgoing(v)){neig_xor[v]^=e;}}neig_xor[root]^=edge_index(-1);ascending_dfs(tree,degree,[&](auto v){edge_index ep=neig_xor[v];neig_xor[tree.edge(ep).traverse(v)]^=ep;return ep;},callback,root);return neig_xor;}template<undirected_graph_type graph>void parent_dfs(graph const&tree,auto const&parent,auto&&callback){std::vector<int>degree(tree.n());node_index root=-1;for(auto[v,e]:parent|std::views::enumerate){if(e!=-1){degree[v]++;degree[tree.edge(e).traverse(node_index(v))]++;}else{root=node_index(v);}}assert(root!=-1);degree[root]=0;ascending_dfs(tree,degree,[&](auto v){return parent[v];},callback,root);}}