CP-Algorithms Library

This documentation is automatically generated by competitive-verifier/competitive-verifier

View the Project on GitHub cp-algorithms/cp-algorithms-aux

:heavy_check_mark: Dirichlet Inverse and Prefix Sums (verify/number_theory/dirichlet_inv.test.cpp)

Depends on

Code

// @brief Dirichlet Inverse and Prefix Sums
#define PROBLEM "https://judge.yosupo.jp/problem/dirichlet_inverse_and_prefix_sums"
#pragma GCC optimize("Ofast,unroll-loops")
#include <iostream>
#include "blazingio/blazingio.min.hpp"
#include "cp-algo/util/big_alloc.hpp"
#include "cp-algo/number_theory/modint.hpp"
#include "cp-algo/number_theory/dirichlet.hpp"
#include <bits/stdc++.h>

using namespace std;
using namespace cp_algo::math;
using base = modint<998244353>;

void solve() {
    int64_t n;
    cin >> n;
    auto [_, m] = floor_stats(n);
    cp_algo::big_vector<base> G(m+1);
    for (int i = 1; i <= m; ++i) {
        cin >> G[i];
    }
    auto F = Dirichlet_div(views::repeat(base(1)), G, n);
    for (int i = 1; i <= m; ++i) {
        cout << F[i] << " \n"[i == m];
    }
}

signed main() {
    //freopen("input.txt", "r", stdin);
    ios::sync_with_stdio(0);
    cin.tie(0);
    int t = 1;
    cin >> t;
    while(t--) {
        solve();
    }
}
#line 1 "verify/number_theory/dirichlet_inv.test.cpp"
// @brief Dirichlet Inverse and Prefix Sums
#define PROBLEM "https://judge.yosupo.jp/problem/dirichlet_inverse_and_prefix_sums"
#pragma GCC optimize("Ofast,unroll-loops")
#include <iostream>
#line 1 "blazingio/blazingio.min.hpp"
// NOLINTBEGIN
// clang-format off
// DO NOT REMOVE THIS MESSAGE. The mess that follows is a minified build of
// https://github.com/purplesyringa/blazingio. Refer to the repository for
// a human-readable version and documentation.
// Options: cbfoiedrhWLMXaIaAn
#define M$(x,...)_mm256_##x##_epi8(__VA_ARGS__)
#define $u(...)__VA_ARGS__
#if __APPLE__
#define $m(A,B)A
#else
#define $m(A,B)B
#endif
#if _WIN32
#define $w(A,B)A
#else
#define $w(A,B)B
#endif
#if __i386__|_M_IX86
#define $H(A,B)A
#else
#define $H(A,B)B
#endif
#if __aarch64__
#define $a(A,B)A
#else
#define $a(A,B)B
#endif
#define $P(x)void F(x K){
#define $T template<$c T
#define $c class
#define $C constexpr
#define $R return
#define $O operator
#define u$ uint64_t
#define $r $R*this;
#include<array>
#include<bitset>
#include<complex>
#include<cstring>
#include $a(<arm_neon.h>,<immintrin.h>)
#include<stdint.h>
#include $w(<windows.h>,<sys/mman.h>)
#include<sys/stat.h>
#include $w(<io.h>,<unistd.h>)
#include $w(<ios>,<sys/resource.h>)
#if _MSC_VER
#define __builtin_add_overflow(a,b,c)_addcarry_u64(0,a,b,c)
#define $s
#else
$H(,u$ _umul128(u$ a,u$ b,u$*D){auto x=(__uint128_t)a*b;*D=u$(x>>64);$R(u$)x;})
#define $s $a(,__attribute__((target("avx2"))))
#endif
#define $z $a(16,32)
#define $t $a(uint8x16_t,__m256i)
#define $I $w(__forceinline,__attribute__((always_inline)))
#define $F M(),
#define E$(x)if(!(x))abort();
$w(LONG WINAPI $x(_EXCEPTION_POINTERS*);,)namespace $f{using namespace std;struct B{enum $c A:char{}c;B&$O=(char x){c=A{x};$r}$O char(){$R(char)c;}};$C u$ C=~0ULL/255;struct D{string&K;};static B E[65568];template<int F>struct G{B*H,*S;void K(off_t C){$w(char*D=(char*)VirtualAlloc(0,(C+8191)&-4096,8192,1);E$(D)E$(VirtualFree(D,0,32768))DWORD A=C&-65536;E$(!A||MapViewOfFileEx(CreateFileMapping(GetStdHandle(-10),0,2,0,A,0),4,0,0,0,D)==D)E$(VirtualAlloc(D+A,65536,12288,4)==D+A)E$(~_lseek(0,A,0))DWORD E=0;ReadFile(GetStdHandle(-10),D+A,65536,&E,0);,int A=getpagesize();char*D=(char*)mmap(0,C+A,3,2,0,0);E$(D!=(void*)-1)E$(mmap(D+((C+A-1)&-A),A,3,$m(4114,50),-1,0)!=(void*)-1))H=(B*)D+C;*H=10;H[1]=48;H[2]=0;S=(B*)D;}void L(){H=S=E;}$I void M(){if(F&&S==H){$w(DWORD A=0;ReadFile(GetStdHandle(-10),S=E,65536,&A,0);,$a($u(register long A asm("x0")=0,D asm("x1")=(long)E,G asm("x2")=65536,C asm($m("x16","x8"))=$m(3,63);asm volatile("svc 0" $m("x80",):"+r"(A),"+r"(D):"r"(C),"r"(G));S=launder(E);),off_t A=$H(3,$m(33554435,0));B*D=E;asm volatile($H("int $128","syscall"):"+a"(A),$H("+c"(D):"b","+S"(D):"D")(0),"d"(65536)$H(,$u(:"rcx","r11")));S=D;))H=S+A;*H=10;if(!A)E[1]=48,E[2]=0;}}$T>$I void N(T&x){while($F(*S&240)==48)x=T(x*10+(*S++-48));}$T>$I decltype((void)~T{1})O(T&x){M();int A=is_signed_v<T>&&*S==45;S+=A;N(x=0);x=A?1+~x:x;}$T>$I decltype((void)T{1.})O(T&x){M();int A=*S==45;S+=A;$F S+=*S==43;u$ n=0;int i=0;for(;i<18&&($F*S&240)==48;i++)n=n*10+*S++-48;int B=20;int C=*S==46;S+=C;for(;i<18&&($F*S&240)==48;i++)n=n*10+*S++-48,B-=C;x=(T)n;while(($F*S&240)==48)x=x*10+*S++-48,B-=C;if(*S==46)S++,C=1;while(($F*S&240)==48)x=x*10+*S++-48,B-=C;int D;if((*S|32)==101)S++,$F S+=*S==43,O(D),B+=D;static $C auto E=[](){array<T,41>E{};T x=1;for(int i=21;i--;)E[40-i]=x,E[i]=1/x,x*=10;$R E;}();while(B>40)x*=(T)1e10,B-=10;while(B<0)x*=(T)1e-10,B+=10;x*=E[B];x=A?-x:x;}$I void O(bool&x){$F x=*S++==49;}$I void O(char&x){$F x=*S++;}$I void O(uint8_t&x){$F x=*S++;}$I void O(int8_t&x){$F x=*S++;}$T>$s void P(string&K,T C){M();B*G=S;C();K.assign((char*)G,S-G);while(F&&S==H&&($F H!=E)){C();K.append(E,S);}}$s void O(string&K){P(K,[&]()$s{B*p=S;$w(ULONG R;,)$t x;$a(uint64x2_t A;while(memcpy(&x,p,16),A=uint64x2_t(x<33),!(A[0]|A[1]))p+=16;S=p+(A[0]?0:8)+$w((_BitScanForward64(&R,A[0]?A[0]:A[1]),R),__builtin_ctzll(A[0]?A[0]:A[1]))/8;,int J;$t C=M$(set1,32);while(memcpy(&x,p,32),!(J=M$(movemask,M$(cmpeq,C,_mm256_max_epu8(C,x)))))p+=32;S=p+$w((_BitScanForward(&R,J),R),__builtin_ctz(J));)});}$s void O(D&A){P(A.K,[&](){S=(B*)memchr(S,10,H-S+1);});if(A.K.size()&&A.K.back()==13)A.K.pop_back();if(A.K.empty()||S<H)S+=*S==10;}$T>$I void O(complex<T>&K){T A,B{};if($F*S==40){S++;O(A);if($F*S++==44)Q(B),S++;}else O(A);K={A,B};}template<size_t N>$s void O(bitset<N>&K){if(N>4095&&!*this)$R;ptrdiff_t i=N;while(i)if($F i%$z||H-S<$z)K[--i]=*S++==49;else{B*p=S;for(int64_t j=0;j<min(i,H-S)/$z;j++){i-=$z;$t x;memcpy(&x,p,$z);$a(auto B=(uint8x16_t)vdupq_n_u64(~2ULL/254)&(48-x);auto C=vzip_u8(vget_high_u8(B),vget_low_u8(B));auto y=vaddvq_u16((uint16x8_t)vcombine_u8(C.val[0],C.val[1]));,u$ a=~0ULL/65025;auto y=$w(_byteswap_ulong,__builtin_bswap32)(M$(movemask,M$(shuffle,_mm256_slli_epi32(x,7),_mm256_set_epi64x(a+C*24,a+C*16,a+C*8,a))));)p+=$z;memcpy((char*)&K+i/8,&y,$z/8);}S=p;}}$T>$I void Q(T&K){if(!is_same_v<T,D>)while($F(uint8_t)*S<33)S++;O(K);}$O bool(){$R!!*this;}bool $O!(){$R S>H;}};struct U{G<0>A;G<1>B;U(){struct stat D;E$(~fstat(0,&D))(D.st_mode>>12)==8?A.K(D.st_size):B.L();}U*tie(nullptr_t){$R this;}void sync_with_stdio(bool){}$T>$I U&$O>>(T&K){A.S?A.Q(K):B.Q(K);$r}$O bool(){$R!!*this;}bool $O!(){$R A.S?!A:!B;}};short A[100];char L[64]{1};struct
V{char*D;B*S;int J;V(){$w(E$(D=(char*)VirtualAlloc(0,536870912,8192,4))E$(VirtualAlloc(D,4096,4096,260))AddVectoredExceptionHandler(1,$x);,size_t C=536870912;$m(,rlimit E;getrlimit(RLIMIT_AS,&E);if(~E.rlim_cur)C=25165824;)D=(char*)mmap(0,C,3,$m(4162,16418),-1,0);E$(D!=(void*)-1))S=(B*)D;for(int i=0;i<100;i++)A[i]=short((48+i/10)|((48+i%10)<<8));for(int i=1;i<64;i++)L[i]=L[i-1]+(0x8922489224892249>>i&1);}~V(){flush($w(!J,));}void flush($w(int F=0,)){$w(J=1;auto E=GetStdHandle(-11);auto C=F?ReOpenFile(E,1073741824,7,2684354560):(void*)-1;DWORD A;E$(C==(void*)-1?WriteFile(E,D,DWORD((char*)S-D),&A,0):(WriteFile(C,D,DWORD(((char*)S-D+4095)&-4096),&A,0)&&~_chsize(1,int((char*)S-D)))),auto G=D;ssize_t A;while((A=write(1,G,(char*)S-G))>0)G+=A;E$(~A))S=(B*)D;}$P(char)*S++=K;}$P(uint8_t)*S++=K;}$P(int8_t)*S++=K;}$P(bool)*S++=48+K;}$T>decltype((void)~T{1})F(T K){using D=make_unsigned_t<T>;D C=K;if(K<0)F('-'),C=1+~C;static $C auto N=[](){array<D,5*sizeof(T)/2>N{};D n=1;for(size_t i=1;i<N.size();i++)n*=10,N[i]=n;$R N;}();$w(ULONG M;,)int G=L[$w(($H(_BitScanReverse(&M,ULONG((int64_t)C>>32))?M+=32:_BitScanReverse(&M,(ULONG)C|1),_BitScanReverse64(&M,C|1)),M),63^__builtin_clzll(C|1))];G-=C<N[G-1];short H[20];if $C(sizeof(T)==2){auto n=33555U*C-C/2;u$ H=A[n>>25];n=(n&33554431)*25;H|=A[n>>23]<<16;H|=u$(48+((n&8388607)*5>>22))<<32;H>>=40-G*8;memcpy(S,&H,8);}else if $C(sizeof(T)==4){auto n=1441151881ULL*C;$H(n>>=25;n++;for(int i=0;i<5;i++){H[i]=A[n>>32];n=(n&~0U)*100;},int K=57;auto J=~0ULL>>7;for(int i=0;i<5;i++){H[i]=A[n>>K];n=(n&J)*25;K-=2;J/=4;})memcpy(S,(B*)H+10-G,16);}else{$H($u(if(C<(1ULL<<32)){$R F((uint32_t)C);}auto J=(u$)1e10;auto x=C/J,y=C%J;int K=100000,b[]{int(x/K),int(x%K),int(y/K),int(y%K)};B H[40];for(int i=0;i<4;i++){int n=int((429497ULL*b[i]>>7)+1);B*p=H+i*5;*p=48+char(n>>25);n=(n&~0U>>7)*25;memcpy(p+1,A+(n>>23),2);memcpy(p+3,A+((n&~0U>>9)*25>>21),2);}),$u(u$ D,E=_umul128(18,C,&D),F;_umul128(0x725dd1d243aba0e8,C,&F);D+=__builtin_add_overflow(E,F+1,&E);for(int i=0;i<10;i++)H[i]=A[D],E=_umul128(100,E,&D);))memcpy(S,(B*)H+20-G,20);}S+=G;}$T>decltype((void)T{1.})F(T K){if(K<0)F('-'),K=-K;auto G=[&](){auto x=u$(K*1e12);$H($u(x-=x>999999999999;uint32_t n[]{uint32_t(x/1000000*429497>>7)+1,uint32_t(x%1000000*429497>>7)+1};int K=25,J=~0U>>7;for(int i=0;i<3;i++){for(int j=0;j<2;j++)memcpy(S+i*2+j*6,A+(n[j]>>K),2),n[j]=(n[j]&J)*25;K-=2;J/=4;}S+=12;),$u(u$ D,E=_umul128(472236648287,x,&D)>>8;E|=D<<56;D>>=8;E++;for(int i=0;i<6;i++)memcpy(S,A+D,2),S+=2,E=_umul128(100,E,&D);))};if(K==0)$R F('0');if(K>=1e16){K*=(T)1e-16;int B=16;while(K>=1)K*=(T).1,B++;F("0.");G();F('e');F(B);}else if(K>=1){auto B=(u$)K;F(B);if((K-=(T)B)>0)F('.'),G();}else F("0."),G();}$P(const char*)$w(size_t A=strlen(K);memcpy((char*)S,K,A);S+=A;,S=(B*)stpcpy((char*)S,K);)}$P(const uint8_t*)F((char*)K);}$P(const int8_t*)F((char*)K);}$P(string_view)memcpy(S,K.data(),K.size());S+=K.size();}$T>$P(complex<T>)*this<<'('<<K.real()<<','<<K.imag()<<')';}template<size_t N>$s $P(const bitset<N>&)auto i=N;while(i%$z)*S++=48+K[--i];B*p=S;while(i){i-=$z;$a(short,int)x;memcpy(&x,(char*)&K+i/8,$z/8);$a(auto A=(uint8x8_t)vdup_n_u16(x);vst1q_u8((uint8_t*)p,48-vtstq_u8(vcombine_u8(vuzp2_u8(A,A),vuzp1_u8(A,A)),(uint8x16_t)vdupq_n_u64(~2ULL/254)));,auto b=_mm256_set1_epi64x(~2ULL/254);_mm256_storeu_si256(($t*)p,M$(sub,M$(set1,48),M$(cmpeq,_mm256_and_si256(M$(shuffle,_mm256_set1_epi32(x),_mm256_set_epi64x(0,C,C*2,C*3)),b),b)));)p+=$z;}S=p;}$T>V&$O<<(const T&K){F(K);$r}V&$O<<(V&(*A)(V&)){$R A(*this);}};struct W{$T>W&$O<<(const T&K){$r}W&$O<<(W&(*A)(W&)){$R A(*this);}};}namespace std{$f::U i$;$f::V o$;$f::W e$;$f::U&getline($f::U&B,string&K){$f::D A{K};$R B>>A;}$f::V&flush($f::V&B){if(!i$.A.S)B.flush();$R B;}$f::V&endl($f::V&B){$R B<<'\n'<<flush;}$f::W&endl($f::W&B){$R B;}$f::W&flush($f::W&B){$R B;}}$w(LONG WINAPI $x(_EXCEPTION_POINTERS*A){auto C=A->ExceptionRecord;auto B=C->ExceptionInformation[1];if(C->ExceptionCode==2147483649&&B-(ULONG_PTR)std::o$.D<0x40000000){E$(VirtualAlloc((char*)B,16777216,4096,4)&&VirtualAlloc((char*)(B+16777216),4096,4096,260))$R-1;}$R 0;},)
#define freopen(...)if(freopen(__VA_ARGS__)==stdin)std::i$=$f::U{}
#define cin i$
#define cout o$
#ifdef ONLINE_JUDGE
#define cerr e$
#define clog e$
#endif
// End of blazingio
// NOLINTEND
// clang-format on
#line 1 "cp-algo/util/big_alloc.hpp"



#include <map>
#include <deque>
#include <vector>
#include <string>
#include <cstddef>
#line 10 "cp-algo/util/big_alloc.hpp"

// Single macro to detect POSIX platforms (Linux, Unix, macOS)
#if defined(__linux__) || defined(__unix__) || (defined(__APPLE__) && defined(__MACH__))
#  define CP_ALGO_USE_MMAP 1
#  include <sys/mman.h>
#else
#  define CP_ALGO_USE_MMAP 0
#endif

namespace cp_algo {
    template <typename T, std::size_t Align = 32>
    class big_alloc {
        static_assert( Align >= alignof(void*), "Align must be at least pointer-size");
        static_assert(std::popcount(Align) == 1, "Align must be a power of two");
    public:
        using value_type = T;
        template <class U> struct rebind { using other = big_alloc<U, Align>; };
        constexpr bool operator==(const big_alloc&) const = default;
        constexpr bool operator!=(const big_alloc&) const = default;

        big_alloc() noexcept = default;
        template <typename U, std::size_t A>
        big_alloc(const big_alloc<U, A>&) noexcept {}

        [[nodiscard]] T* allocate(std::size_t n) {
            std::size_t padded = round_up(n * sizeof(T));
            std::size_t align = std::max<std::size_t>(alignof(T),  Align);
#if CP_ALGO_USE_MMAP
            if (padded >= MEGABYTE) {
                void* raw = mmap(nullptr, padded,
                                PROT_READ | PROT_WRITE,
                                MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
                madvise(raw, padded, MADV_HUGEPAGE);
                madvise(raw, padded, MADV_POPULATE_WRITE);
                return static_cast<T*>(raw);
            }
#endif
            return static_cast<T*>(::operator new(padded, std::align_val_t(align)));
        }

        void deallocate(T* p, std::size_t n) noexcept {
            if (!p) return;
            std::size_t padded = round_up(n * sizeof(T));
            std::size_t align  = std::max<std::size_t>(alignof(T),  Align);
    #if CP_ALGO_USE_MMAP
            if (padded >= MEGABYTE) { munmap(p, padded); return; }
    #endif
            ::operator delete(p, padded, std::align_val_t(align));
        }

    private:
        static constexpr std::size_t MEGABYTE = 1 << 20;
        static constexpr std::size_t round_up(std::size_t x) noexcept {
            return (x + Align - 1) / Align * Align;
        }
    };

    template<typename T>
    using big_vector = std::vector<T, big_alloc<T>>;
    template<typename T>
    using big_basic_string = std::basic_string<T, std::char_traits<T>, big_alloc<T>>;
    template<typename T>
    using big_deque = std::deque<T, big_alloc<T>>;
    template<typename Key, typename Value, typename Compare = std::less<Key>>
    using big_map = std::map<Key, Value, Compare, big_alloc<std::pair<const Key, Value>>>;
    using big_string = big_basic_string<char>;
}

#line 1 "cp-algo/number_theory/modint.hpp"


#line 1 "cp-algo/math/common.hpp"


#include <functional>
#include <cstdint>
#include <cassert>
namespace cp_algo::math {
#ifdef CP_ALGO_MAXN
    const int maxn = CP_ALGO_MAXN;
#else
    const int maxn = 1 << 19;
#endif
    const int magic = 64; // threshold for sizes to run the naive algo

    auto bpow(auto const& x, auto n, auto const& one, auto op) {
        if(n == 0) {
            return one;
        } else {
            auto t = bpow(x, n / 2, one, op);
            t = op(t, t);
            if(n % 2) {
                t = op(t, x);
            }
            return t;
        }
    }
    auto bpow(auto x, auto n, auto ans) {
        return bpow(x, n, ans, std::multiplies{});
    }
    template<typename T>
    T bpow(T const& x, auto n) {
        return bpow(x, n, T(1));
    }
    inline constexpr auto inv2(auto x) {
        assert(x % 2);
        std::make_unsigned_t<decltype(x)> y = 1;
        while(y * x != 1) {
            y *= 2 - x * y;
        }
        return y;
    }
}

#line 6 "cp-algo/number_theory/modint.hpp"
namespace cp_algo::math {

    template<typename modint, typename _Int>
    struct modint_base {
        using Int = _Int;
        using UInt = std::make_unsigned_t<Int>;
        static constexpr size_t bits = sizeof(Int) * 8;
        using Int2 = std::conditional_t<bits <= 32, int64_t, __int128_t>;
        using UInt2 = std::conditional_t<bits <= 32, uint64_t, __uint128_t>;
        constexpr static Int mod() {
            return modint::mod();
        }
        constexpr static Int remod() {
            return modint::remod();
        }
        constexpr static UInt2 modmod() {
            return UInt2(mod()) * mod();
        }
        constexpr modint_base() = default;
        constexpr modint_base(Int2 rr) {
            to_modint().setr(UInt((rr + modmod()) % mod()));
        }
        modint inv() const {
            return bpow(to_modint(), mod() - 2);
        }
        modint operator - () const {
            modint neg;
            neg.r = std::min(-r, remod() - r);
            return neg;
        }
        modint& operator /= (const modint &t) {
            return to_modint() *= t.inv();
        }
        modint& operator *= (const modint &t) {
            r = UInt(UInt2(r) * t.r % mod());
            return to_modint();
        }
        modint& operator += (const modint &t) {
            r += t.r; r = std::min(r, r - remod());
            return to_modint();
        }
        modint& operator -= (const modint &t) {
            r -= t.r; r = std::min(r, r + remod());
            return to_modint();
        }
        modint operator + (const modint &t) const {return modint(to_modint()) += t;}
        modint operator - (const modint &t) const {return modint(to_modint()) -= t;}
        modint operator * (const modint &t) const {return modint(to_modint()) *= t;}
        modint operator / (const modint &t) const {return modint(to_modint()) /= t;}
        // Why <=> doesn't work?..
        auto operator == (const modint &t) const {return to_modint().getr() == t.getr();}
        auto operator != (const modint &t) const {return to_modint().getr() != t.getr();}
        auto operator <= (const modint &t) const {return to_modint().getr() <= t.getr();}
        auto operator >= (const modint &t) const {return to_modint().getr() >= t.getr();}
        auto operator < (const modint &t) const {return to_modint().getr() < t.getr();}
        auto operator > (const modint &t) const {return to_modint().getr() > t.getr();}
        Int rem() const {
            UInt R = to_modint().getr();
            return R - (R > (UInt)mod() / 2) * mod();
        }
        constexpr void setr(UInt rr) {
            r = rr;
        }
        constexpr UInt getr() const {
            return r;
        }

        // Only use these if you really know what you're doing!
        static UInt modmod8() {return UInt(8 * modmod());}
        void add_unsafe(UInt t) {r += t;}
        void pseudonormalize() {r = std::min(r, r - modmod8());}
        modint const& normalize() {
            if(r >= (UInt)mod()) {
                r %= mod();
            }
            return to_modint();
        }
        void setr_direct(UInt rr) {r = rr;}
        UInt getr_direct() const {return r;}
    protected:
        UInt r;
    private:
        constexpr modint& to_modint() {return static_cast<modint&>(*this);}
        constexpr modint const& to_modint() const {return static_cast<modint const&>(*this);}
    };
    template<typename modint>
    concept modint_type = std::is_base_of_v<modint_base<modint, typename modint::Int>, modint>;
    template<modint_type modint>
    decltype(std::cin)& operator >> (decltype(std::cin) &in, modint &x) {
        typename modint::UInt r;
        auto &res = in >> r;
        x.setr(r);
        return res;
    }
    template<modint_type modint>
    decltype(std::cout)& operator << (decltype(std::cout) &out, modint const& x) {
        return out << x.getr();
    }

    template<auto m>
    struct modint: modint_base<modint<m>, decltype(m)> {
        using Base = modint_base<modint<m>, decltype(m)>;
        using Base::Base;
        static constexpr Base::Int mod() {return m;}
        static constexpr Base::UInt remod() {return m;}
        auto getr() const {return Base::r;}
    };

    template<typename Int = int>
    struct dynamic_modint: modint_base<dynamic_modint<Int>, Int> {
        using Base = modint_base<dynamic_modint<Int>, Int>;
        using Base::Base;

        static Base::UInt m_reduce(Base::UInt2 ab) {
            if(mod() % 2 == 0) [[unlikely]] {
                return typename Base::UInt(ab % mod());
            } else {
                typename Base::UInt2 m = typename Base::UInt(ab) * imod();
                return typename Base::UInt((ab + m * mod()) >> Base::bits);
            }
        }
        static Base::UInt m_transform(Base::UInt a) {
            if(mod() % 2 == 0) [[unlikely]] {
                return a;
            } else {
                return m_reduce(a * pw128());
            }
        }
        dynamic_modint& operator *= (const dynamic_modint &t) {
            Base::r = m_reduce(typename Base::UInt2(Base::r) * t.r);
            return *this;
        }
        void setr(Base::UInt rr) {
            Base::r = m_transform(rr);
        }
        Base::UInt getr() const {
            typename Base::UInt res = m_reduce(Base::r);
            return std::min(res, res - mod());
        }
        static Int mod() {return m;}
        static Int remod() {return 2 * m;}
        static Base::UInt imod() {return im;}
        static Base::UInt2 pw128() {return r2;}
        static void switch_mod(Int nm) {
            m = nm;
            im = m % 2 ? inv2(-m) : 0;
            r2 = static_cast<Base::UInt>(static_cast<Base::UInt2>(-1) % m + 1);
        }

        // Wrapper for temp switching
        auto static with_mod(Int tmp, auto callback) {
            struct scoped {
                Int prev = mod();
                ~scoped() {switch_mod(prev);}
            } _;
            switch_mod(tmp);
            return callback();
        }
    private:
        static thread_local Int m;
        static thread_local Base::UInt im, r2;
    };
    template<typename Int>
    Int thread_local dynamic_modint<Int>::m = 1;
    template<typename Int>
    dynamic_modint<Int>::Base::UInt thread_local dynamic_modint<Int>::im = -1;
    template<typename Int>
    dynamic_modint<Int>::Base::UInt thread_local dynamic_modint<Int>::r2 = 0;
}

#line 1 "cp-algo/number_theory/dirichlet.hpp"


#include <algorithm>
#line 5 "cp-algo/number_theory/dirichlet.hpp"
#include <ranges>
#line 7 "cp-algo/number_theory/dirichlet.hpp"
#include <cmath>
namespace cp_algo::math {    
    auto floor_stats(int64_t n) {
        auto rt_n = int(sqrtl(n));
        return std::pair{rt_n, 2 * rt_n - (n / rt_n == rt_n)};
    }

    auto floor_generator(int64_t n) {
        auto [rt_n, num_floors] = floor_stats(n);
        return [n, rt_n = rt_n, num_floors = num_floors](int k) {
            return k <= rt_n ? int64_t(k) : n / int64_t(num_floors - k + 1);
        };
    }

    auto floors(int64_t n) {
        auto [_, m] = floor_stats(n);
        return std::views::iota(0, m+1) | std::views::transform(floor_generator(n));
    }

    struct interval {
        int lo, hi;
        auto operator <=>(const interval&) const = default;
    };

    // callback(k) when:
    //     (F * G)[k] = H[k] + (F[k] - F[k-1]) * G[1] + (G[k] - G[k-1]) * F[1]
    // Return the value to be saved in H[k]
    enum exec_mode { standard, reverse };
    template<exec_mode mode = standard>
    void Dirichlet_helper(int64_t n, auto &H, auto const& F, auto const& G, auto &&callback) {
        auto [rt_n, num_floors] = floor_stats(n);

        auto to_ord = [&](int64_t k) {
            return k <= rt_n ? int(k) : num_floors - int(n / k) + 1;
        };

        auto call = [&](interval x, interval y, interval z) {
            auto Fx = F[x.hi] - F[x.lo - 1];
            auto Fy = F[y.hi] - F[y.lo - 1];
            decltype(Fx) Gx, Gy;
            if constexpr (mode == standard) {
                Gy = G[y.hi] - G[y.lo - 1];
                Gx = G[x.hi] - G[x.lo - 1];
            } else {
                Gy = G[y.lo - 1] - G[y.hi];
                Gx = G[x.lo - 1] - G[x.hi];
            }
            auto t = Fx * Gy;
            if(x != y) [[likely]] {
                t += Fy * Gx;
            }
            H[z.lo] += t;
            if (z.hi < num_floors) [[likely]] {
                H[z.hi + 1] -= t;
            }
        };
        for (int k = 2; k <= num_floors; ++k) {
            if(k > rt_n) {
                int z = num_floors - k + 1;
                for (int x = 2; ; x++) {
                    int y_lo_ord = std::max(x, z) + 1;
                    int y_hi_ord = to_ord(n / (x * z));
                    if (y_hi_ord < y_lo_ord) break;
                    call({x, x}, {y_lo_ord, y_hi_ord}, {k, k});
                }
            }

            H[k] = callback(k);

            if(k <= rt_n) {
                int x = k;
                for (int y = 2; y < k; ++y) {
                    int z_lo_ord = to_ord(1LL * x * y);
                    int z_hi_ord = to_ord(n / x);
                    if (z_hi_ord < z_lo_ord) break;
                    call({x, x}, {y, y}, {z_lo_ord, z_hi_ord});
                }
                int z_lo_ord = to_ord(1LL * x * x);
                call({x, x}, {x, x}, {z_lo_ord, num_floors});
            }
        }
    }

    auto Dirichlet_mul(auto const& F, auto const& G, int64_t n) {
        auto m = size(F);
        std::decay_t<decltype(F)> H(m);
        H[1] = F[1] * G[1];
        Dirichlet_helper(n, H, F, G, [&](auto k) {
            return H[k] + (F[k] - F[k-1]) * G[1] + (G[k] - G[k-1]) * F[1];
        });
        partial_sum(begin(H), end(H), begin(H));
        return H;
    }

    void Dirichlet_div_inplace(auto &H, auto const& G, int64_t n) {
        auto Gi = G[1].inv();
        H[0] -= H[0];
        adjacent_difference(begin(H), end(H), begin(H));
        H[1] *= Gi;
        Dirichlet_helper<reverse>(n, H, H, G, [&](auto k) {
            return (Gi * (H[k] - (G[k] - G[k-1]) * H[1])) + H[k-1];
        });
    }

    auto Dirichlet_div(auto const& H, auto const& G, int64_t n) {
        auto m = std::size(G);
        auto F = H | std::views::take(m) | std::ranges::to<std::vector>();
        Dirichlet_div_inplace(F, G, n);
        return F;
    }
}

#line 9 "verify/number_theory/dirichlet_inv.test.cpp"
#include <bits/stdc++.h>

using namespace std;
using namespace cp_algo::math;
using base = modint<998244353>;

void solve() {
    int64_t n;
    cin >> n;
    auto [_, m] = floor_stats(n);
    cp_algo::big_vector<base> G(m+1);
    for (int i = 1; i <= m; ++i) {
        cin >> G[i];
    }
    auto F = Dirichlet_div(views::repeat(base(1)), G, n);
    for (int i = 1; i <= m; ++i) {
        cout << F[i] << " \n"[i == m];
    }
}

signed main() {
    //freopen("input.txt", "r", stdin);
    ios::sync_with_stdio(0);
    cin.tie(0);
    int t = 1;
    cin >> t;
    while(t--) {
        solve();
    }
}

Test cases

Env Name Status Elapsed Memory
g++ example_00 :heavy_check_mark: AC 5 ms 6 MB
g++ example_01 :heavy_check_mark: AC 4 ms 6 MB
g++ many_00 :heavy_check_mark: AC 119 ms 31 MB
g++ many_01 :heavy_check_mark: AC 121 ms 31 MB
g++ many_02 :heavy_check_mark: AC 119 ms 31 MB
g++ max_00 :heavy_check_mark: AC 3494 ms 59 MB
g++ max_01 :heavy_check_mark: AC 3453 ms 59 MB
g++ max_02 :heavy_check_mark: AC 3472 ms 59 MB
g++ max_03 :heavy_check_mark: AC 3505 ms 59 MB
g++ max_04 :heavy_check_mark: AC 3461 ms 59 MB
g++ random_00 :heavy_check_mark: AC 1307 ms 30 MB
g++ random_01 :heavy_check_mark: AC 2052 ms 42 MB
g++ random_02 :heavy_check_mark: AC 515 ms 18 MB
g++ random_03 :heavy_check_mark: AC 3304 ms 58 MB
g++ random_04 :heavy_check_mark: AC 2723 ms 49 MB
g++ small_00 :heavy_check_mark: AC 6 ms 6 MB
g++ small_01 :heavy_check_mark: AC 5 ms 6 MB
g++ small_02 :heavy_check_mark: AC 5 ms 6 MB
g++ small_03 :heavy_check_mark: AC 5 ms 6 MB
g++ small_04 :heavy_check_mark: AC 5 ms 6 MB
g++ very_small_00 :heavy_check_mark: AC 4 ms 6 MB
g++ very_small_01 :heavy_check_mark: AC 4 ms 6 MB
g++ very_small_02 :heavy_check_mark: AC 4 ms 6 MB
g++ very_small_03 :heavy_check_mark: AC 4 ms 6 MB
g++ very_small_04 :heavy_check_mark: AC 4 ms 6 MB
Back to top page