This documentation is automatically generated by competitive-verifier/competitive-verifier
// @brief Convolution mod $10^9+7$
#define PROBLEM "https://judge.yosupo.jp/problem/convolution_mod_1000000007"
#pragma GCC optimize("Ofast,unroll-loops")
#include "cp-algo/math/fft.hpp"
#include <bits/stdc++.h>
using namespace std;
using namespace cp_algo::math;
const int mod = 1e9 + 7;
using base = modint<mod>;
void solve() {
int n, m;
cin >> n >> m;
vector<base> a(n), b(m);
copy_n(istream_iterator<base>(cin), n, begin(a));
copy_n(istream_iterator<base>(cin), m, begin(b));
fft::mul(a, b);
ranges::copy(a, ostream_iterator<base>(cout, " "));
}
signed main() {
//freopen("input.txt", "r", stdin);
ios::sync_with_stdio(0);
cin.tie(0);
int t = 1;
while(t--) {
solve();
}
}
#line 1 "verify/poly/convolution107.test.cpp"
// @brief Convolution mod $10^9+7$
#define PROBLEM "https://judge.yosupo.jp/problem/convolution_mod_1000000007"
#pragma GCC optimize("Ofast,unroll-loops")
#line 1 "cp-algo/math/fft.hpp"
#line 1 "cp-algo/number_theory/modint.hpp"
#line 1 "cp-algo/math/common.hpp"
#include <functional>
#include <cstdint>
namespace cp_algo::math {
#ifdef CP_ALGO_MAXN
const int maxn = CP_ALGO_MAXN;
#else
const int maxn = 1 << 19;
#endif
const int magic = 64; // threshold for sizes to run the naive algo
auto bpow(auto const& x, auto n, auto const& one, auto op) {
if(n == 0) {
return one;
} else {
auto t = bpow(x, n / 2, one, op);
t = op(t, t);
if(n % 2) {
t = op(t, x);
}
return t;
}
}
auto bpow(auto x, auto n, auto ans) {
return bpow(x, n, ans, std::multiplies{});
}
template<typename T>
T bpow(T const& x, auto n) {
return bpow(x, n, T(1));
}
}
#line 4 "cp-algo/number_theory/modint.hpp"
#include <iostream>
#include <cassert>
namespace cp_algo::math {
inline constexpr auto inv2(auto x) {
assert(x % 2);
std::make_unsigned_t<decltype(x)> y = 1;
while(y * x != 1) {
y *= 2 - x * y;
}
return y;
}
template<typename modint, typename _Int>
struct modint_base {
using Int = _Int;
using UInt = std::make_unsigned_t<Int>;
static constexpr size_t bits = sizeof(Int) * 8;
using Int2 = std::conditional_t<bits <= 32, int64_t, __int128_t>;
using UInt2 = std::conditional_t<bits <= 32, uint64_t, __uint128_t>;
static Int mod() {
return modint::mod();
}
static UInt imod() {
return modint::imod();
}
static UInt2 pw128() {
return modint::pw128();
}
static UInt m_reduce(UInt2 ab) {
if(mod() % 2 == 0) [[unlikely]] {
return UInt(ab % mod());
} else {
UInt2 m = (UInt)ab * imod();
return UInt((ab + m * mod()) >> bits);
}
}
static UInt m_transform(UInt a) {
if(mod() % 2 == 0) [[unlikely]] {
return a;
} else {
return m_reduce(a * pw128());
}
}
modint_base(): r(0) {}
modint_base(Int2 rr): r(UInt(rr % mod())) {
r = std::min(r, r + mod());
r = m_transform(r);
}
modint inv() const {
return bpow(to_modint(), mod() - 2);
}
modint operator - () const {
modint neg;
neg.r = std::min(-r, 2 * mod() - r);
return neg;
}
modint& operator /= (const modint &t) {
return to_modint() *= t.inv();
}
modint& operator *= (const modint &t) {
r = m_reduce((UInt2)r * t.r);
return to_modint();
}
modint& operator += (const modint &t) {
r += t.r; r = std::min(r, r - 2 * mod());
return to_modint();
}
modint& operator -= (const modint &t) {
r -= t.r; r = std::min(r, r + 2 * mod());
return to_modint();
}
modint operator + (const modint &t) const {return modint(to_modint()) += t;}
modint operator - (const modint &t) const {return modint(to_modint()) -= t;}
modint operator * (const modint &t) const {return modint(to_modint()) *= t;}
modint operator / (const modint &t) const {return modint(to_modint()) /= t;}
// Why <=> doesn't work?..
auto operator == (const modint_base &t) const {return getr() == t.getr();}
auto operator != (const modint_base &t) const {return getr() != t.getr();}
auto operator <= (const modint_base &t) const {return getr() <= t.getr();}
auto operator >= (const modint_base &t) const {return getr() >= t.getr();}
auto operator < (const modint_base &t) const {return getr() < t.getr();}
auto operator > (const modint_base &t) const {return getr() > t.getr();}
Int rem() const {
UInt R = getr();
return 2 * R > (UInt)mod() ? R - mod() : R;
}
// Only use if you really know what you're doing!
UInt modmod() const {return (UInt)8 * mod() * mod();};
void add_unsafe(UInt t) {r += t;}
void pseudonormalize() {r = std::min(r, r - modmod());}
modint const& normalize() {
if(r >= (UInt)mod()) {
r %= mod();
}
return to_modint();
}
void setr(UInt rr) {r = m_transform(rr);}
UInt getr() const {
UInt res = m_reduce(r);
return std::min(res, res - mod());
}
void setr_direct(UInt rr) {r = rr;}
UInt getr_direct() const {return r;}
private:
UInt r;
modint& to_modint() {return static_cast<modint&>(*this);}
modint const& to_modint() const {return static_cast<modint const&>(*this);}
};
template<typename modint>
concept modint_type = std::is_base_of_v<modint_base<modint, typename modint::Int>, modint>;
template<modint_type modint>
std::istream& operator >> (std::istream &in, modint &x) {
typename modint::UInt r;
auto &res = in >> r;
x.setr(r);
return res;
}
template<modint_type modint>
std::ostream& operator << (std::ostream &out, modint const& x) {
return out << x.getr();
}
template<auto m>
struct modint: modint_base<modint<m>, decltype(m)> {
using Base = modint_base<modint<m>, decltype(m)>;
using Base::Base;
static constexpr Base::UInt im = m % 2 ? inv2(-m) : 0;
static constexpr Base::UInt r2 = (typename Base::UInt2)(-1) % m + 1;
static constexpr Base::Int mod() {return m;}
static constexpr Base::UInt imod() {return im;}
static constexpr Base::UInt2 pw128() {return r2;}
};
template<typename Int = int64_t>
struct dynamic_modint: modint_base<dynamic_modint<Int>, Int> {
using Base = modint_base<dynamic_modint<Int>, Int>;
using Base::Base;
static Int mod() {return m;}
static Base::UInt imod() {return im;}
static Base::UInt2 pw128() {return r2;}
static void switch_mod(Int nm) {
m = nm;
im = m % 2 ? inv2(-m) : 0;
r2 = static_cast<Base::UInt>(static_cast<Base::UInt2>(-1) % m + 1);
}
// Wrapper for temp switching
auto static with_mod(Int tmp, auto callback) {
struct scoped {
Int prev = mod();
~scoped() {switch_mod(prev);}
} _;
switch_mod(tmp);
return callback();
}
private:
static thread_local Int m;
static thread_local Base::UInt im, r2;
};
template<typename Int>
Int thread_local dynamic_modint<Int>::m = 1;
template<typename Int>
dynamic_modint<Int>::Base::UInt thread_local dynamic_modint<Int>::im = -1;
template<typename Int>
dynamic_modint<Int>::Base::UInt thread_local dynamic_modint<Int>::r2 = 0;
}
#line 1 "cp-algo/util/checkpoint.hpp"
#line 4 "cp-algo/util/checkpoint.hpp"
#include <chrono>
#include <string>
namespace cp_algo {
template<bool final = false>
void checkpoint([[maybe_unused]] std::string const& msg = "") {
#ifdef CP_ALGO_CHECKPOINT
static double last = 0;
double now = (double)clock() / CLOCKS_PER_SEC;
double delta = now - last;
last = now;
if(msg.size()) {
std::cerr << msg << ": " << (final ? now : delta) * 1000 << " ms\n";
}
#endif
}
}
#line 1 "cp-algo/math/cvector.hpp"
#line 1 "cp-algo/util/complex.hpp"
#line 4 "cp-algo/util/complex.hpp"
#include <cmath>
namespace cp_algo {
// Custom implementation, since std::complex is UB on non-floating types
template<typename T>
struct complex {
using value_type = T;
T x, y;
constexpr complex() {}
constexpr complex(T x): x(x), y() {}
constexpr complex(T x, T y): x(x), y(y) {}
complex& operator *= (T t) {x *= t; y *= t; return *this;}
complex& operator /= (T t) {x /= t; y /= t; return *this;}
complex operator * (T t) const {return complex(*this) *= t;}
complex operator / (T t) const {return complex(*this) /= t;}
complex& operator += (complex t) {x += t.x; y += t.y; return *this;}
complex& operator -= (complex t) {x -= t.x; y -= t.y; return *this;}
complex operator * (complex t) const {return {x * t.x - y * t.y, x * t.y + y * t.x};}
complex operator / (complex t) const {return *this * t.conj() / t.norm();}
complex operator + (complex t) const {return complex(*this) += t;}
complex operator - (complex t) const {return complex(*this) -= t;}
complex& operator *= (complex t) {return *this = *this * t;}
complex& operator /= (complex t) {return *this = *this / t;}
complex operator - () const {return {-x, -y};}
complex conj() const {return {x, -y};}
T norm() const {return x * x + y * y;}
T abs() const {return std::sqrt(norm());}
T real() const {return x;}
T imag() const {return y;}
T& real() {return x;}
T& imag() {return y;}
static constexpr complex polar(T r, T theta) {return {r * cos(theta), r * sin(theta)};}
auto operator <=> (complex const& t) const = default;
};
template<typename T>
complex<T> operator * (auto x, complex<T> y) {return y *= x;}
template<typename T> complex<T> conj(complex<T> x) {return x.conj();}
template<typename T> T norm(complex<T> x) {return x.norm();}
template<typename T> T abs(complex<T> x) {return x.abs();}
template<typename T> T& real(complex<T> &x) {return x.real();}
template<typename T> T& imag(complex<T> &x) {return x.imag();}
template<typename T> T real(complex<T> const& x) {return x.real();}
template<typename T> T imag(complex<T> const& x) {return x.imag();}
template<typename T>
constexpr complex<T> polar(T r, T theta) {
return complex<T>::polar(r, theta);
}
template<typename T>
std::ostream& operator << (std::ostream &out, complex<T> x) {
return out << x.real() << ' ' << x.imag();
}
}
#line 1 "cp-algo/util/new_big.hpp"
#include <sys/mman.h>
namespace cp_algo {
template<typename T>
auto new_big(size_t len) {
auto raw = mmap(nullptr, len * sizeof(T),
PROT_READ | PROT_WRITE,
MAP_PRIVATE | MAP_ANONYMOUS,
-1, 0);
madvise(raw, len * sizeof(T), MADV_HUGEPAGE);
madvise(raw, len * sizeof(T), MADV_POPULATE_WRITE);
return static_cast<T*>(raw);
}
template<typename T>
void delete_big(T* ptr, size_t len) {
munmap(ptr, len * sizeof(T));
}
}
#line 6 "cp-algo/math/cvector.hpp"
#include <experimental/simd>
#include <ranges>
namespace stdx = std::experimental;
namespace cp_algo::math::fft {
using ftype = double;
static constexpr size_t bytes = 32;
static constexpr size_t flen = bytes / sizeof(ftype);
using point = complex<ftype>;
using vftype [[gnu::vector_size(bytes)]] = ftype;
using vpoint = complex<vftype>;
static constexpr vftype vz = {};
static constexpr vpoint vi = {vz, vz + 1};
struct cvector {
vpoint *r;
size_t sz;
cvector(size_t n) {
sz = std::max(flen, std::bit_ceil(n));
r = new_big<vpoint>(sz / flen);
checkpoint("cvector create");
}
cvector(cvector const& t) {
sz = t.sz;
r = new_big<vpoint>(sz / flen);
memcpy(r, t.r, (sz / flen) * sizeof(vpoint));
checkpoint("cvector copy");
}
cvector(cvector&& t) noexcept {
sz = t.sz;
r = std::exchange(t.r, nullptr);
}
~cvector() noexcept {
if(r) {
delete_big(r, sz / flen);
}
}
vpoint& at(size_t k) {return r[k / flen];}
vpoint at(size_t k) const {return r[k / flen];}
template<class pt = point>
void set(size_t k, pt t) {
if constexpr(std::is_same_v<pt, point>) {
real(r[k / flen])[k % flen] = real(t);
imag(r[k / flen])[k % flen] = imag(t);
} else {
at(k) = t;
}
}
template<class pt = point>
pt get(size_t k) const {
if constexpr(std::is_same_v<pt, point>) {
return {real(r[k / flen])[k % flen], imag(r[k / flen])[k % flen]};
} else {
return at(k);
}
}
size_t size() const {
return sz;
}
static size_t eval_arg(size_t n) {
if(n < pre_roots) {
return eval_args[n];
} else {
return eval_arg(n / 2) | (n & 1) << (std::bit_width(n) - 1);
}
}
static auto root(size_t n, size_t k) {
if(n < pre_roots) {
return roots[n + k];
} else {
return polar(1., std::numbers::pi / (ftype)n * (ftype)k);
}
}
static point eval_point(size_t n) {
if(n < pre_roots) {
return evalp[n];
} else {
return root(2 * std::bit_floor(n), eval_arg(n));
}
}
static void exec_on_roots(size_t n, size_t m, auto &&callback) {
point cur;
point arg = root(n, 1);
for(size_t i = 0; i < m; i++) {
if(i % 32 == 0 || n < pre_roots) {
cur = root(n, i);
} else {
cur *= arg;
}
callback(i, cur);
}
}
template<int step = 1>
static void exec_on_evals(size_t n, auto &&callback) {
for(size_t i = 0; i < n; i++) {
callback(i, eval_point(step * i));
}
}
static auto dot_block(size_t k, cvector const& A, cvector const& B) {
auto rt = eval_point(k / flen / 2);
if(k / flen % 2) {
rt = -rt;
}
auto [Ax, Ay] = A.at(k);
auto Bv = B.at(k);
vpoint res = vz;
for (size_t i = 0; i < flen; i++) {
res += vpoint(vz + Ax[i], vz + Ay[i]) * Bv;
real(Bv) = __builtin_shufflevector(real(Bv), real(Bv), 3, 0, 1, 2);
imag(Bv) = __builtin_shufflevector(imag(Bv), imag(Bv), 3, 0, 1, 2);
auto x = real(Bv)[0], y = imag(Bv)[0];
real(Bv)[0] = x * real(rt) - y * imag(rt);
imag(Bv)[0] = x * imag(rt) + y * real(rt);
}
return res;
}
void dot(cvector const& t) {
size_t n = this->size();
for(size_t k = 0; k < n; k += flen) {
set(k, dot_block(k, *this, t));
}
checkpoint("dot");
}
void ifft() {
size_t n = size();
for(size_t i = flen; i <= n / 2; i *= 2) {
if (4 * i <= n) { // radix-4
exec_on_evals<2>(n / (4 * i), [&](size_t k, point rt) {
k *= 4 * i;
vpoint v1 = {vz + real(rt), vz - imag(rt)};
vpoint v2 = v1 * v1;
vpoint v3 = v1 * v2;
for(size_t j = k; j < k + i; j += flen) {
auto A = at(j);
auto B = at(j + i);
auto C = at(j + 2 * i);
auto D = at(j + 3 * i);
at(j) = (A + B + C + D);
at(j + 2 * i) = (A + B - C - D) * v2;
at(j + i) = (A - B - vi * (C - D)) * v1;
at(j + 3 * i) = (A - B + vi * (C - D)) * v3;
}
});
i *= 2;
} else { // radix-2 fallback
exec_on_evals(n / (2 * i), [&](size_t k, point rt) {
k *= 2 * i;
vpoint cvrt = {vz + real(rt), vz - imag(rt)};
for(size_t j = k; j < k + i; j += flen) {
auto B = at(j) - at(j + i);
at(j) += at(j + i);
at(j + i) = B * cvrt;
}
});
}
}
checkpoint("ifft");
for(size_t k = 0; k < n; k += flen) {
set(k, get<vpoint>(k) /= vz + (ftype)(n / flen));
}
}
void fft() {
size_t n = size();
for(size_t i = n / 2; i >= flen; i /= 2) {
if (i / 2 >= flen) { // radix-4
i /= 2;
exec_on_evals<2>(n / (4 * i), [&](size_t k, point rt) {
k *= 4 * i;
vpoint v1 = {vz + real(rt), vz + imag(rt)};
vpoint v2 = v1 * v1;
vpoint v3 = v1 * v2;
for(size_t j = k; j < k + i; j += flen) {
auto A = at(j);
auto B = at(j + i) * v1;
auto C = at(j + 2 * i) * v2;
auto D = at(j + 3 * i) * v3;
at(j) = (A + C) + (B + D);
at(j + i) = (A + C) - (B + D);
at(j + 2 * i) = (A - C) + vi * (B - D);
at(j + 3 * i) = (A - C) - vi * (B - D);
}
});
} else { // radix-2 fallback
exec_on_evals(n / (2 * i), [&](size_t k, point rt) {
k *= 2 * i;
vpoint vrt = {vz + real(rt), vz + imag(rt)};
for(size_t j = k; j < k + i; j += flen) {
auto t = at(j + i) * vrt;
at(j + i) = at(j) - t;
at(j) += t;
}
});
}
}
checkpoint("fft");
}
static constexpr size_t pre_roots = 1 << 16;
static constexpr std::array<point, pre_roots> roots = []() {
std::array<point, pre_roots> res = {};
for(size_t n = 1; n < res.size(); n *= 2) {
for(size_t k = 0; k < n; k++) {
res[n + k] = polar(1., std::numbers::pi / ftype(n) * ftype(k));
}
}
return res;
}();
static constexpr std::array<size_t, pre_roots> eval_args = []() {
std::array<size_t, pre_roots> res = {};
for(size_t i = 1; i < pre_roots; i++) {
res[i] = res[i >> 1] | (i & 1) << (std::bit_width(i) - 1);
}
return res;
}();
static constexpr std::array<point, pre_roots> evalp = []() {
std::array<point, pre_roots> res = {};
res[0] = 1;
for(size_t n = 1; n < pre_roots; n++) {
res[n] = polar(1., std::numbers::pi * ftype(eval_args[n]) / ftype(2 * std::bit_floor(n)));
}
return res;
}();
};
}
#line 8 "cp-algo/math/fft.hpp"
namespace cp_algo::math::fft {
template<modint_type base>
struct dft {
int split;
cvector A, B;
dft(auto const& a, size_t n): A(n), B(n) {
split = int(std::sqrt(base::mod())) + 1;
cvector::exec_on_roots(2 * n, std::min(n, size(a)), [&](size_t i, auto rt) {
auto splt = [&](size_t i) {
auto ai = ftype(i < size(a) ? a[i].rem() : 0);
auto rem = std::remainder(ai, split);
auto quo = (ai - rem) / split;
return std::pair{rem, quo};
};
auto [rai, qai] = splt(i);
auto [rani, qani] = splt(n + i);
A.set(i, point(rai, rani) * rt);
B.set(i, point(qai, qani) * rt);
});
checkpoint("dft init");
if(n) {
A.fft();
B.fft();
}
}
void mul(auto &&C, auto const& D, auto &res, size_t k) {
assert(A.size() == C.size());
size_t n = A.size();
if(!n) {
res = {};
return;
}
for(size_t k = 0; k < n; k += flen) {
auto rt = cvector::eval_point(k / flen / 2);
if(k / flen % 2) {
rt = -rt;
}
auto [Ax, Ay] = A.at(k);
auto [Bx, By] = B.at(k);
vpoint AC, AD, BC, BD;
AC = AD = BC = BD = vz;
auto Cv = C.at(k), Dv = D.at(k);
for (size_t i = 0; i < flen; i++) {
vpoint Av = {vz + Ax[i], vz + Ay[i]}, Bv = {vz + Bx[i], vz + By[i]};
AC += Av * Cv; AD += Av * Dv;
BC += Bv * Cv; BD += Bv * Dv;
real(Cv) = __builtin_shufflevector(real(Cv), real(Cv), 3, 0, 1, 2);
imag(Cv) = __builtin_shufflevector(imag(Cv), imag(Cv), 3, 0, 1, 2);
real(Dv) = __builtin_shufflevector(real(Dv), real(Dv), 3, 0, 1, 2);
imag(Dv) = __builtin_shufflevector(imag(Dv), imag(Dv), 3, 0, 1, 2);
auto cx = real(Cv)[0], cy = imag(Cv)[0];
auto dx = real(Dv)[0], dy = imag(Dv)[0];
real(Cv)[0] = cx * real(rt) - cy * imag(rt);
imag(Cv)[0] = cx * imag(rt) + cy * real(rt);
real(Dv)[0] = dx * real(rt) - dy * imag(rt);
imag(Dv)[0] = dx * imag(rt) + dy * real(rt);
}
A.at(k) = AC;
C.at(k) = AD + BC;
B.at(k) = BD;
}
checkpoint("dot");
A.ifft();
B.ifft();
C.ifft();
auto splitsplit = (base(split) * split).rem();
cvector::exec_on_roots(2 * n, std::min(n, k), [&](size_t i, point rt) {
rt = conj(rt);
auto Ai = A.get(i) * rt;
auto Bi = B.get(i) * rt;
auto Ci = C.get(i) * rt;
int64_t A0 = llround(real(Ai));
int64_t A1 = llround(real(Ci));
int64_t A2 = llround(real(Bi));
res[i] = A0 + A1 * split + A2 * splitsplit;
if(n + i >= k) {
return;
}
int64_t B0 = llround(imag(Ai));
int64_t B1 = llround(imag(Ci));
int64_t B2 = llround(imag(Bi));
res[n + i] = B0 + B1 * split + B2 * splitsplit;
});
checkpoint("recover mod");
}
void mul_inplace(auto &&B, auto& res, size_t k) {
mul(B.A, B.B, res, k);
}
void mul(auto const& B, auto& res, size_t k) {
mul(cvector(B.A), B.B, res, k);
}
std::vector<base> operator *= (dft &B) {
std::vector<base> res(2 * A.size());
mul_inplace(B, res, size(res));
return res;
}
std::vector<base> operator *= (dft const& B) {
std::vector<base> res(2 * A.size());
mul(B, res, size(res));
return res;
}
auto operator * (dft const& B) const {
return dft(*this) *= B;
}
point operator [](int i) const {return A.get(i);}
};
void mul_slow(auto &a, auto const& b, size_t k) {
if(empty(a) || empty(b)) {
a.clear();
} else {
size_t n = std::min(k, size(a));
size_t m = std::min(k, size(b));
a.resize(k);
for(int j = int(k - 1); j >= 0; j--) {
a[j] *= b[0];
for(int i = std::max(j - (int)n, 0) + 1; i < std::min(j + 1, (int)m); i++) {
a[j] += a[j - i] * b[i];
}
}
}
}
size_t com_size(size_t as, size_t bs) {
if(!as || !bs) {
return 0;
}
return std::max(flen, std::bit_ceil(as + bs - 1) / 2);
}
void mul_truncate(auto &a, auto const& b, size_t k) {
using base = std::decay_t<decltype(a[0])>;
if(std::min({k, size(a), size(b)}) < magic) {
mul_slow(a, b, k);
return;
}
auto n = std::max(flen, std::bit_ceil(
std::min(k, size(a)) + std::min(k, size(b)) - 1
) / 2);
auto A = dft<base>(a | std::views::take(k), n);
a.resize(k);
checkpoint("resize a");
if(&a == &b) {
A.mul(A, a, k);
} else {
A.mul_inplace(dft<base>(b | std::views::take(k), n), a, k);
}
}
void mul(auto &a, auto const& b) {
if(size(a)) {
mul_truncate(a, b, size(a) + size(b) - 1);
}
}
}
#line 5 "verify/poly/convolution107.test.cpp"
#include <bits/stdc++.h>
using namespace std;
using namespace cp_algo::math;
const int mod = 1e9 + 7;
using base = modint<mod>;
void solve() {
int n, m;
cin >> n >> m;
vector<base> a(n), b(m);
copy_n(istream_iterator<base>(cin), n, begin(a));
copy_n(istream_iterator<base>(cin), m, begin(b));
fft::mul(a, b);
ranges::copy(a, ostream_iterator<base>(cout, " "));
}
signed main() {
//freopen("input.txt", "r", stdin);
ios::sync_with_stdio(0);
cin.tie(0);
int t = 1;
while(t--) {
solve();
}
}
Env | Name | Status | Elapsed | Memory |
---|---|---|---|---|
g++ | example_00 |
![]() |
5 ms | 4 MB |
g++ | example_01 |
![]() |
4 ms | 4 MB |
g++ | fft_killer_00 |
![]() |
158 ms | 44 MB |
g++ | fft_killer_01 |
![]() |
161 ms | 44 MB |
g++ | fft_killer_02 |
![]() |
148 ms | 44 MB |
g++ | fft_killer_03 |
![]() |
157 ms | 43 MB |
g++ | fft_killer_04 |
![]() |
151 ms | 43 MB |
g++ | fft_killer_05 |
![]() |
153 ms | 44 MB |
g++ | fft_killer_06 |
![]() |
159 ms | 44 MB |
g++ | fft_killer_07 |
![]() |
164 ms | 44 MB |
g++ | fft_killer_08 |
![]() |
146 ms | 43 MB |
g++ | fft_killer_09 |
![]() |
154 ms | 43 MB |
g++ | max_ans_zero_00 |
![]() |
170 ms | 44 MB |
g++ | max_random_00 |
![]() |
156 ms | 44 MB |
g++ | max_random_01 |
![]() |
173 ms | 43 MB |
g++ | medium_00 |
![]() |
7 ms | 4 MB |
g++ | medium_01 |
![]() |
6 ms | 4 MB |
g++ | medium_02 |
![]() |
6 ms | 4 MB |
g++ | medium_all_zero_00 |
![]() |
6 ms | 4 MB |
g++ | random_00 |
![]() |
131 ms | 42 MB |
g++ | random_01 |
![]() |
136 ms | 42 MB |
g++ | random_02 |
![]() |
69 ms | 24 MB |
g++ | signed_overflow_00 |
![]() |
6 ms | 4 MB |
g++ | small_00 |
![]() |
5 ms | 4 MB |
g++ | small_01 |
![]() |
5 ms | 4 MB |
g++ | small_02 |
![]() |
5 ms | 4 MB |
g++ | small_03 |
![]() |
5 ms | 4 MB |
g++ | small_04 |
![]() |
5 ms | 4 MB |
g++ | small_05 |
![]() |
5 ms | 4 MB |
g++ | small_06 |
![]() |
5 ms | 4 MB |
g++ | small_07 |
![]() |
5 ms | 4 MB |
g++ | small_08 |
![]() |
5 ms | 4 MB |
g++ | small_09 |
![]() |
5 ms | 4 MB |
g++ | small_10 |
![]() |
5 ms | 4 MB |
g++ | small_11 |
![]() |
5 ms | 4 MB |
g++ | small_12 |
![]() |
5 ms | 4 MB |
g++ | small_13 |
![]() |
4 ms | 4 MB |
g++ | small_14 |
![]() |
5 ms | 4 MB |
g++ | small_15 |
![]() |
5 ms | 4 MB |
g++ | small_and_large_00 |
![]() |
95 ms | 41 MB |
g++ | small_and_large_01 |
![]() |
100 ms | 41 MB |
g++ | small_and_large_02 |
![]() |
99 ms | 41 MB |
g++ | small_and_large_03 |
![]() |
93 ms | 41 MB |
g++ | unsigned_overflow_00 |
![]() |
5 ms | 4 MB |