This documentation is automatically generated by competitive-verifier/competitive-verifier
#include "cp-algo/math/cvector.hpp"
#ifndef CP_ALGO_MATH_CVECTOR_HPP
#define CP_ALGO_MATH_CVECTOR_HPP
#include <algorithm>
#include <cassert>
#include <complex>
#include <vector>
#include <ranges>
namespace cp_algo::math::fft {
using ftype = double;
static constexpr size_t bytes = 32;
static constexpr size_t flen = bytes / sizeof(ftype);
using point = std::complex<ftype>;
using vftype [[gnu::vector_size(bytes)]] = ftype;
using vpoint = std::complex<vftype>;
#define WITH_IV(...) \
[&]<size_t ... i>(std::index_sequence<i...>) { \
return __VA_ARGS__; \
}(std::make_index_sequence<flen>());
template<typename ft>
constexpr ft to_ft(auto x) {
return ft{} + x;
}
template<typename pt>
constexpr pt to_pt(point r) {
using ft = std::conditional_t<std::is_same_v<point, pt>, ftype, vftype>;
return {to_ft<ft>(r.real()), to_ft<ft>(r.imag())};
}
struct cvector {
static constexpr size_t pre_roots = 1 << 17;
std::vector<vftype> x, y;
cvector(size_t n) {
n = std::max(flen, std::bit_ceil(n));
x.resize(n / flen);
y.resize(n / flen);
}
template<class pt = point>
void set(size_t k, pt t) {
if constexpr(std::is_same_v<pt, point>) {
x[k / flen][k % flen] = real(t);
y[k / flen][k % flen] = imag(t);
} else {
x[k / flen] = real(t);
y[k / flen] = imag(t);
}
}
template<class pt = point>
pt get(size_t k) const {
if constexpr(std::is_same_v<pt, point>) {
return {x[k / flen][k % flen], y[k / flen][k % flen]};
} else {
return {x[k / flen], y[k / flen]};
}
}
vpoint vget(size_t k) const {
return get<vpoint>(k);
}
size_t size() const {
return flen * std::size(x);
}
void dot(cvector const& t) {
size_t n = size();
for(size_t k = 0; k < n; k += flen) {
set(k, get<vpoint>(k) * t.get<vpoint>(k));
}
}
static const cvector roots;
template<class pt = point>
static pt root(size_t n, size_t k) {
if(n < pre_roots) {
return roots.get<pt>(n + k);
} else {
auto arg = std::numbers::pi / ftype(n);
if constexpr(std::is_same_v<pt, point>) {
return {cos(ftype(k) * arg), sin(ftype(k) * arg)};
} else {
return WITH_IV(pt{vftype{cos(ftype(k + i) * arg)...},
vftype{sin(ftype(k + i) * arg)...}});
}
}
}
template<class pt = point>
static void exec_on_roots(size_t n, size_t m, auto &&callback) {
size_t step = sizeof(pt) / sizeof(point);
pt cur;
pt arg = to_pt<pt>(root<point>(n, step));
for(size_t i = 0; i < m; i += step) {
if(i % 64 == 0 || n < pre_roots) {
cur = root<pt>(n, i);
} else {
cur *= arg;
}
callback(i, cur);
}
}
void ifft() {
size_t n = size();
for(size_t i = 1; i < n; i *= 2) {
for(size_t j = 0; j < n; j += 2 * i) {
auto butterfly = [&]<class pt>(size_t k, pt rt) {
k += j;
auto t = get<pt>(k + i) * conj(rt);
set(k + i, get<pt>(k) - t);
set(k, get<pt>(k) + t);
};
if(2 * i <= flen) {
exec_on_roots(i, i, butterfly);
} else {
exec_on_roots<vpoint>(i, i, butterfly);
}
}
}
for(size_t k = 0; k < n; k += flen) {
set(k, get<vpoint>(k) /= to_pt<vpoint>(ftype(n)));
}
}
void fft() {
size_t n = size();
for(size_t i = n / 2; i >= 1; i /= 2) {
for(size_t j = 0; j < n; j += 2 * i) {
auto butterfly = [&]<class pt>(size_t k, pt rt) {
k += j;
auto A = get<pt>(k) + get<pt>(k + i);
auto B = get<pt>(k) - get<pt>(k + i);
set(k, A);
set(k + i, B * rt);
};
if(2 * i <= flen) {
exec_on_roots(i, i, butterfly);
} else {
exec_on_roots<vpoint>(i, i, butterfly);
}
}
}
}
};
const cvector cvector::roots = []() {
cvector res(pre_roots);
for(size_t n = 1; n < res.size(); n *= 2) {
auto base = std::polar(1., std::numbers::pi / ftype(n));
point cur = 1;
for(size_t k = 0; k < n; k++) {
if((k & 15) == 0) {
cur = std::polar(1., std::numbers::pi * ftype(k) / ftype(n));
}
res.set(n + k, cur);
cur *= base;
}
}
return res;
}();
template<typename base>
struct dft {
cvector A;
dft(std::vector<base> const& a, size_t n): A(n) {
for(size_t i = 0; i < std::min(n, a.size()); i++) {
A.set(i, a[i]);
}
if(n) {
A.fft();
}
}
std::vector<base> operator *= (dft const& B) {
assert(A.size() == B.A.size());
size_t n = A.size();
if(!n) {
return std::vector<base>();
}
A.dot(B.A);
A.ifft();
std::vector<base> res(n);
for(size_t k = 0; k < n; k++) {
res[k] = A.get(k);
}
return res;
}
auto operator * (dft const& B) const {
return dft(*this) *= B;
}
point operator [](int i) const {return A.get(i);}
};
}
#endif // CP_ALGO_MATH_CVECTOR_HPP
#line 1 "cp-algo/math/cvector.hpp"
#include <algorithm>
#include <cassert>
#include <complex>
#include <vector>
#include <ranges>
namespace cp_algo::math::fft {
using ftype = double;
static constexpr size_t bytes = 32;
static constexpr size_t flen = bytes / sizeof(ftype);
using point = std::complex<ftype>;
using vftype [[gnu::vector_size(bytes)]] = ftype;
using vpoint = std::complex<vftype>;
#define WITH_IV(...) \
[&]<size_t ... i>(std::index_sequence<i...>) { \
return __VA_ARGS__; \
}(std::make_index_sequence<flen>());
template<typename ft>
constexpr ft to_ft(auto x) {
return ft{} + x;
}
template<typename pt>
constexpr pt to_pt(point r) {
using ft = std::conditional_t<std::is_same_v<point, pt>, ftype, vftype>;
return {to_ft<ft>(r.real()), to_ft<ft>(r.imag())};
}
struct cvector {
static constexpr size_t pre_roots = 1 << 17;
std::vector<vftype> x, y;
cvector(size_t n) {
n = std::max(flen, std::bit_ceil(n));
x.resize(n / flen);
y.resize(n / flen);
}
template<class pt = point>
void set(size_t k, pt t) {
if constexpr(std::is_same_v<pt, point>) {
x[k / flen][k % flen] = real(t);
y[k / flen][k % flen] = imag(t);
} else {
x[k / flen] = real(t);
y[k / flen] = imag(t);
}
}
template<class pt = point>
pt get(size_t k) const {
if constexpr(std::is_same_v<pt, point>) {
return {x[k / flen][k % flen], y[k / flen][k % flen]};
} else {
return {x[k / flen], y[k / flen]};
}
}
vpoint vget(size_t k) const {
return get<vpoint>(k);
}
size_t size() const {
return flen * std::size(x);
}
void dot(cvector const& t) {
size_t n = size();
for(size_t k = 0; k < n; k += flen) {
set(k, get<vpoint>(k) * t.get<vpoint>(k));
}
}
static const cvector roots;
template<class pt = point>
static pt root(size_t n, size_t k) {
if(n < pre_roots) {
return roots.get<pt>(n + k);
} else {
auto arg = std::numbers::pi / ftype(n);
if constexpr(std::is_same_v<pt, point>) {
return {cos(ftype(k) * arg), sin(ftype(k) * arg)};
} else {
return WITH_IV(pt{vftype{cos(ftype(k + i) * arg)...},
vftype{sin(ftype(k + i) * arg)...}});
}
}
}
template<class pt = point>
static void exec_on_roots(size_t n, size_t m, auto &&callback) {
size_t step = sizeof(pt) / sizeof(point);
pt cur;
pt arg = to_pt<pt>(root<point>(n, step));
for(size_t i = 0; i < m; i += step) {
if(i % 64 == 0 || n < pre_roots) {
cur = root<pt>(n, i);
} else {
cur *= arg;
}
callback(i, cur);
}
}
void ifft() {
size_t n = size();
for(size_t i = 1; i < n; i *= 2) {
for(size_t j = 0; j < n; j += 2 * i) {
auto butterfly = [&]<class pt>(size_t k, pt rt) {
k += j;
auto t = get<pt>(k + i) * conj(rt);
set(k + i, get<pt>(k) - t);
set(k, get<pt>(k) + t);
};
if(2 * i <= flen) {
exec_on_roots(i, i, butterfly);
} else {
exec_on_roots<vpoint>(i, i, butterfly);
}
}
}
for(size_t k = 0; k < n; k += flen) {
set(k, get<vpoint>(k) /= to_pt<vpoint>(ftype(n)));
}
}
void fft() {
size_t n = size();
for(size_t i = n / 2; i >= 1; i /= 2) {
for(size_t j = 0; j < n; j += 2 * i) {
auto butterfly = [&]<class pt>(size_t k, pt rt) {
k += j;
auto A = get<pt>(k) + get<pt>(k + i);
auto B = get<pt>(k) - get<pt>(k + i);
set(k, A);
set(k + i, B * rt);
};
if(2 * i <= flen) {
exec_on_roots(i, i, butterfly);
} else {
exec_on_roots<vpoint>(i, i, butterfly);
}
}
}
}
};
const cvector cvector::roots = []() {
cvector res(pre_roots);
for(size_t n = 1; n < res.size(); n *= 2) {
auto base = std::polar(1., std::numbers::pi / ftype(n));
point cur = 1;
for(size_t k = 0; k < n; k++) {
if((k & 15) == 0) {
cur = std::polar(1., std::numbers::pi * ftype(k) / ftype(n));
}
res.set(n + k, cur);
cur *= base;
}
}
return res;
}();
template<typename base>
struct dft {
cvector A;
dft(std::vector<base> const& a, size_t n): A(n) {
for(size_t i = 0; i < std::min(n, a.size()); i++) {
A.set(i, a[i]);
}
if(n) {
A.fft();
}
}
std::vector<base> operator *= (dft const& B) {
assert(A.size() == B.A.size());
size_t n = A.size();
if(!n) {
return std::vector<base>();
}
A.dot(B.A);
A.ifft();
std::vector<base> res(n);
for(size_t k = 0; k < n; k++) {
res[k] = A.get(k);
}
return res;
}
auto operator * (dft const& B) const {
return dft(*this) *= B;
}
point operator [](int i) const {return A.get(i);}
};
}