CP-Algorithms Library

This documentation is automatically generated by competitive-verifier/competitive-verifier

View the Project on GitHub cp-algorithms/cp-algorithms-aux

:heavy_check_mark: cp-algo/number_theory/nimber.hpp

Verified with

Code

#ifndef CP_ALGO_NUMBER_THEORY_NIMBER_HPP
#define CP_ALGO_NUMBER_THEORY_NIMBER_HPP
#include <array>
#include <bit>
#include <cstdint>
#include <immintrin.h>
// Ensure PCLMULQDQ is available at compile time
#if defined(__PCLMUL__)
static constexpr bool CP_ALGO_HAS_PCLMUL = true;
#else
static constexpr bool CP_ALGO_HAS_PCLMUL = false;
#endif
static_assert(CP_ALGO_HAS_PCLMUL,
    "PCLMULQDQ intrinsics not available. Enable it with '-mpclmul' or add '#pragma GCC target(\"pclmul\")' or compile with '-march=native' on supported CPUs.");

namespace cp_algo::math::nimber {
    inline constexpr std::array<uint64_t, 64> BASIS_COL = {
        0x0000000000000001ull, 0x5211145c804b6109ull, 0x7c8bc2cad259879full, 0x565854b4c60c1e0bull,
        0x4068acf7104c20c3ull, 0x662d2bd0f2739155ull, 0x7a90c83701fa8323ull, 0x21cfa750247e8755ull,
        0x67d1044e545abf47ull, 0x4d9d3b5a8568f839ull, 0x567a9d7331b6b3c6ull, 0x1ca54bfdd6d1ae59ull,
        0x454fa483275db25cull, 0x6766df6fec4e9d44ull, 0x35cb621cec1fe7f9ull, 0x4c606d3e52faf263ull,
        0x57640dc825a57954ull, 0x7aca87838b7f6315ull, 0x6d53c884ebf2b0edull, 0x3721d998bb50164bull,
        0x7aa7c62fd6cd53abull, 0x47cbb2c51f7c040full, 0x132063b7f5e42489ull, 0x0c1b36c8b2993f8aull,
        0x60119ecff680497aull, 0x5175da444cc11791ull, 0x5792ff4554765b09ull, 0x0c9fdb8a01334e82ull,
        0x2be0a763a68a4725ull, 0x3c2dc8260ad051f6ull, 0x6c4c9fed8816bb9cull, 0x630062753ffaf766ull,
        0x7b37d31b5d519225ull, 0x2364f7f79705691cull, 0x453eb8a83e2fec71ull, 0x7c0121b37e828666ull,
        0x59190d3250e66011ull, 0x103207f9dda18caeull, 0x28233dce01c69b76ull, 0x4fa519899227a5e7ull,
        0x4567ba46ee7bc6cdull, 0x0a284773d021afd5ull, 0x63894079bbe3a824ull, 0x11013c7fdfaaa5c2ull,
        0x1aa984f18574f3b0ull, 0x0cbaba126fd0c4dbull, 0x0b8797719e6dc725ull, 0x4a2845680aefaa72ull,
        0x536d2535f6934e15ull, 0x01db7a57effcd689ull, 0x7e1ed0ad01e2a5adull, 0x0aedc9b3cee826f6ull,
        0x7ba716eccf9f68e1ull, 0x5d5e23bc0f3dc38full, 0x0b5f2a3b88674d83ull, 0x2de9bafc2f00f8d4ull,
        0x3b56712ad419c7e0ull, 0x3ab4be8c30c19253ull, 0x2708522ffaa654b0ull, 0x2b8bca57bf643598ull,
        0x588825d1a5fa8e1cull, 0x86adf8bf4d45962full, 0x51b4c15d8719dd73ull, 0xe4a2b3b59783d0aaull
    };

    inline constexpr std::array<uint64_t, 64> INV_COL = {
        0x0000000000000001ull, 0x19c9369f278adc02ull, 0xa181e7d66f5ff795ull, 0x5db84357ce785d09ull,
        0xa0bae2f9d2430cc8ull, 0xb7ea5a9705b771c0ull, 0xba4f3cd82801769dull, 0x4886cde01b8241d0ull,
        0x0a6f43f2aaf612edull, 0xebd0142f98030a32ull, 0xa81f89cda43f3792ull, 0xe99aec6b66ccb814ull,
        0xa69d1ff025fc2f82ull, 0x48a81132d25db068ull, 0x4a900f9dcaa9644full, 0xe5ce4ea88259972aull,
        0xf7094c336029f04cull, 0xe191dde287bc9c6bull, 0xaacaff12bff239b8ull, 0x49bc5212be1bc1caull,
        0xfe57defb454446cfull, 0xa1dffcf944bdf6a7ull, 0xb9f1bdb5cee941eeull, 0x12e5e889275c22deull,
        0x5bcb6b117b77eeedull, 0x03eb1ab59d05ae4bull, 0x02a25d7076ddd386ull, 0x53164a606c612245ull,
        0xebb33f5822f66059ull, 0xe9be765f5747b93eull, 0x552a78df373a354full, 0xbcf5ac65f31fb8bfull,
        0xe411e728becdc77bull, 0xf35c26d7b57cdca6ull, 0x4499da83de4ca5f7ull, 0x40ab25bdca4ae226ull,
        0xee004b6f1dff7218ull, 0x0d122da9821c5b41ull, 0x51fbfcb058120efeull, 0xa148b1fa84905b22ull,
        0xbb8ed3e647604d8dull, 0xe2d93fef2472776full, 0x4c17a2541a10e6b5ull, 0x1d879e08903708e7ull,
        0x0fbe7d0d1934da90ull, 0x5bf977d9c6f61d30ull, 0x06832fc918260412ull, 0x0fe22e843ebf73e3ull,
        0x4d7ef4e4fa28d60dull, 0x402250d979afbed5ull, 0x067902b8c8ca2d4full, 0xf38d113fe1d6bb16ull,
        0x414f0248b02b5b7dull, 0xf041922915824ce9ull, 0x11a72fb5e30c93d9ull, 0x12e54f4d63102aeeull,
        0xbc46ac14b3141c6cull, 0x1f172b3c16c645bbull, 0x584b492ed4e8fa6cull, 0x00a852e9a32cc133ull,
        0xa180861bce00a45eull, 0xa194b6bcb4645fb9ull, 0x4509002ad808a4fbull, 0xc5172a0055602f69ull
    };

    template <const auto& COLS>
    consteval auto make_byte_tables() {
        std::array<std::array<uint64_t, 1 << 8>, 8> T{};
        for (int pos = 0; pos < 8; pos++) {
            for (int col = 0; col < 8; col++) {
                for (int mask = 0; mask < (1 << col); mask++) {
                    T[pos][mask | (1 << col)] = T[pos][mask] ^ COLS[pos * 8 + col];
                }
            }
        }
        return T;
    }

    inline constexpr auto INV_BYTE = make_byte_tables<INV_COL>();
    inline constexpr auto BASIS_BYTE = make_byte_tables<BASIS_COL>();

    [[gnu::always_inline]]
    inline uint64_t nim_to_poly(uint64_t x) {
        auto xb = std::bit_cast<std::array<uint8_t, 8>>(x);
        return INV_BYTE[0][xb[0]] ^ INV_BYTE[1][xb[1]]
             ^ INV_BYTE[2][xb[2]] ^ INV_BYTE[3][xb[3]]
             ^ INV_BYTE[4][xb[4]] ^ INV_BYTE[5][xb[5]]
             ^ INV_BYTE[6][xb[6]] ^ INV_BYTE[7][xb[7]];
    }

    [[gnu::always_inline]]
    inline uint64_t poly_to_nim(uint64_t c) {
        auto cb = std::bit_cast<std::array<uint8_t, 8>>(c);
        return BASIS_BYTE[0][cb[0]] ^ BASIS_BYTE[1][cb[1]]
             ^ BASIS_BYTE[2][cb[2]] ^ BASIS_BYTE[3][cb[3]]
             ^ BASIS_BYTE[4][cb[4]] ^ BASIS_BYTE[5][cb[5]]
             ^ BASIS_BYTE[6][cb[6]] ^ BASIS_BYTE[7][cb[7]];
    }

    // Carryless multiply over GF(2) using PCLMULQDQ
    [[gnu::always_inline]]
    inline __m128i clmul(int64_t a, int64_t b) {
        return _mm_clmulepi64_si128(__m128i{a, 0}, __m128i{b, 0}, 0);
    }

    // Reduce modulo x^64 + x^4 + x^3 + x + 1
    [[gnu::always_inline]]
    inline uint64_t reduce_mod(__m128i v) {
        v[0] ^= v[1] ^ (v[1] << 1) ^ (v[1] << 3) ^ (v[1] << 4);
        static constexpr auto RED_OVER = [] {
            std::array<uint64_t, 16> red{};
            for (int q = 0; q < 16; ++q) {
                uint64_t o = q ^ (q >> 1) ^ (q >> 3);
                red[q] = o ^ (o << 1) ^ (o << 3) ^ (o << 4);
            }
            return red;
        }();
        return v[0] ^ RED_OVER[v[1] >> 60];
    }

    // Public nimber product via isomorphism (no recursion, no Gauss at runtime)
    [[gnu::always_inline]]
    inline uint64_t nim_product(uint64_t a, uint64_t b) {
        return poly_to_nim(reduce_mod(clmul(
            nim_to_poly(a),
            nim_to_poly(b)
        )));
    }
}

#endif // CP_ALGO_NUMBER_THEORY_NIMBER_HPP
#line 1 "cp-algo/number_theory/nimber.hpp"


#include <array>
#include <bit>
#include <cstdint>
#include <immintrin.h>
// Ensure PCLMULQDQ is available at compile time
#if defined(__PCLMUL__)
static constexpr bool CP_ALGO_HAS_PCLMUL = true;
#else
static constexpr bool CP_ALGO_HAS_PCLMUL = false;
#endif
static_assert(CP_ALGO_HAS_PCLMUL,
    "PCLMULQDQ intrinsics not available. Enable it with '-mpclmul' or add '#pragma GCC target(\"pclmul\")' or compile with '-march=native' on supported CPUs.");

namespace cp_algo::math::nimber {
    inline constexpr std::array<uint64_t, 64> BASIS_COL = {
        0x0000000000000001ull, 0x5211145c804b6109ull, 0x7c8bc2cad259879full, 0x565854b4c60c1e0bull,
        0x4068acf7104c20c3ull, 0x662d2bd0f2739155ull, 0x7a90c83701fa8323ull, 0x21cfa750247e8755ull,
        0x67d1044e545abf47ull, 0x4d9d3b5a8568f839ull, 0x567a9d7331b6b3c6ull, 0x1ca54bfdd6d1ae59ull,
        0x454fa483275db25cull, 0x6766df6fec4e9d44ull, 0x35cb621cec1fe7f9ull, 0x4c606d3e52faf263ull,
        0x57640dc825a57954ull, 0x7aca87838b7f6315ull, 0x6d53c884ebf2b0edull, 0x3721d998bb50164bull,
        0x7aa7c62fd6cd53abull, 0x47cbb2c51f7c040full, 0x132063b7f5e42489ull, 0x0c1b36c8b2993f8aull,
        0x60119ecff680497aull, 0x5175da444cc11791ull, 0x5792ff4554765b09ull, 0x0c9fdb8a01334e82ull,
        0x2be0a763a68a4725ull, 0x3c2dc8260ad051f6ull, 0x6c4c9fed8816bb9cull, 0x630062753ffaf766ull,
        0x7b37d31b5d519225ull, 0x2364f7f79705691cull, 0x453eb8a83e2fec71ull, 0x7c0121b37e828666ull,
        0x59190d3250e66011ull, 0x103207f9dda18caeull, 0x28233dce01c69b76ull, 0x4fa519899227a5e7ull,
        0x4567ba46ee7bc6cdull, 0x0a284773d021afd5ull, 0x63894079bbe3a824ull, 0x11013c7fdfaaa5c2ull,
        0x1aa984f18574f3b0ull, 0x0cbaba126fd0c4dbull, 0x0b8797719e6dc725ull, 0x4a2845680aefaa72ull,
        0x536d2535f6934e15ull, 0x01db7a57effcd689ull, 0x7e1ed0ad01e2a5adull, 0x0aedc9b3cee826f6ull,
        0x7ba716eccf9f68e1ull, 0x5d5e23bc0f3dc38full, 0x0b5f2a3b88674d83ull, 0x2de9bafc2f00f8d4ull,
        0x3b56712ad419c7e0ull, 0x3ab4be8c30c19253ull, 0x2708522ffaa654b0ull, 0x2b8bca57bf643598ull,
        0x588825d1a5fa8e1cull, 0x86adf8bf4d45962full, 0x51b4c15d8719dd73ull, 0xe4a2b3b59783d0aaull
    };

    inline constexpr std::array<uint64_t, 64> INV_COL = {
        0x0000000000000001ull, 0x19c9369f278adc02ull, 0xa181e7d66f5ff795ull, 0x5db84357ce785d09ull,
        0xa0bae2f9d2430cc8ull, 0xb7ea5a9705b771c0ull, 0xba4f3cd82801769dull, 0x4886cde01b8241d0ull,
        0x0a6f43f2aaf612edull, 0xebd0142f98030a32ull, 0xa81f89cda43f3792ull, 0xe99aec6b66ccb814ull,
        0xa69d1ff025fc2f82ull, 0x48a81132d25db068ull, 0x4a900f9dcaa9644full, 0xe5ce4ea88259972aull,
        0xf7094c336029f04cull, 0xe191dde287bc9c6bull, 0xaacaff12bff239b8ull, 0x49bc5212be1bc1caull,
        0xfe57defb454446cfull, 0xa1dffcf944bdf6a7ull, 0xb9f1bdb5cee941eeull, 0x12e5e889275c22deull,
        0x5bcb6b117b77eeedull, 0x03eb1ab59d05ae4bull, 0x02a25d7076ddd386ull, 0x53164a606c612245ull,
        0xebb33f5822f66059ull, 0xe9be765f5747b93eull, 0x552a78df373a354full, 0xbcf5ac65f31fb8bfull,
        0xe411e728becdc77bull, 0xf35c26d7b57cdca6ull, 0x4499da83de4ca5f7ull, 0x40ab25bdca4ae226ull,
        0xee004b6f1dff7218ull, 0x0d122da9821c5b41ull, 0x51fbfcb058120efeull, 0xa148b1fa84905b22ull,
        0xbb8ed3e647604d8dull, 0xe2d93fef2472776full, 0x4c17a2541a10e6b5ull, 0x1d879e08903708e7ull,
        0x0fbe7d0d1934da90ull, 0x5bf977d9c6f61d30ull, 0x06832fc918260412ull, 0x0fe22e843ebf73e3ull,
        0x4d7ef4e4fa28d60dull, 0x402250d979afbed5ull, 0x067902b8c8ca2d4full, 0xf38d113fe1d6bb16ull,
        0x414f0248b02b5b7dull, 0xf041922915824ce9ull, 0x11a72fb5e30c93d9ull, 0x12e54f4d63102aeeull,
        0xbc46ac14b3141c6cull, 0x1f172b3c16c645bbull, 0x584b492ed4e8fa6cull, 0x00a852e9a32cc133ull,
        0xa180861bce00a45eull, 0xa194b6bcb4645fb9ull, 0x4509002ad808a4fbull, 0xc5172a0055602f69ull
    };

    template <const auto& COLS>
    consteval auto make_byte_tables() {
        std::array<std::array<uint64_t, 1 << 8>, 8> T{};
        for (int pos = 0; pos < 8; pos++) {
            for (int col = 0; col < 8; col++) {
                for (int mask = 0; mask < (1 << col); mask++) {
                    T[pos][mask | (1 << col)] = T[pos][mask] ^ COLS[pos * 8 + col];
                }
            }
        }
        return T;
    }

    inline constexpr auto INV_BYTE = make_byte_tables<INV_COL>();
    inline constexpr auto BASIS_BYTE = make_byte_tables<BASIS_COL>();

    [[gnu::always_inline]]
    inline uint64_t nim_to_poly(uint64_t x) {
        auto xb = std::bit_cast<std::array<uint8_t, 8>>(x);
        return INV_BYTE[0][xb[0]] ^ INV_BYTE[1][xb[1]]
             ^ INV_BYTE[2][xb[2]] ^ INV_BYTE[3][xb[3]]
             ^ INV_BYTE[4][xb[4]] ^ INV_BYTE[5][xb[5]]
             ^ INV_BYTE[6][xb[6]] ^ INV_BYTE[7][xb[7]];
    }

    [[gnu::always_inline]]
    inline uint64_t poly_to_nim(uint64_t c) {
        auto cb = std::bit_cast<std::array<uint8_t, 8>>(c);
        return BASIS_BYTE[0][cb[0]] ^ BASIS_BYTE[1][cb[1]]
             ^ BASIS_BYTE[2][cb[2]] ^ BASIS_BYTE[3][cb[3]]
             ^ BASIS_BYTE[4][cb[4]] ^ BASIS_BYTE[5][cb[5]]
             ^ BASIS_BYTE[6][cb[6]] ^ BASIS_BYTE[7][cb[7]];
    }

    // Carryless multiply over GF(2) using PCLMULQDQ
    [[gnu::always_inline]]
    inline __m128i clmul(int64_t a, int64_t b) {
        return _mm_clmulepi64_si128(__m128i{a, 0}, __m128i{b, 0}, 0);
    }

    // Reduce modulo x^64 + x^4 + x^3 + x + 1
    [[gnu::always_inline]]
    inline uint64_t reduce_mod(__m128i v) {
        v[0] ^= v[1] ^ (v[1] << 1) ^ (v[1] << 3) ^ (v[1] << 4);
        static constexpr auto RED_OVER = [] {
            std::array<uint64_t, 16> red{};
            for (int q = 0; q < 16; ++q) {
                uint64_t o = q ^ (q >> 1) ^ (q >> 3);
                red[q] = o ^ (o << 1) ^ (o << 3) ^ (o << 4);
            }
            return red;
        }();
        return v[0] ^ RED_OVER[v[1] >> 60];
    }

    // Public nimber product via isomorphism (no recursion, no Gauss at runtime)
    [[gnu::always_inline]]
    inline uint64_t nim_product(uint64_t a, uint64_t b) {
        return poly_to_nim(reduce_mod(clmul(
            nim_to_poly(a),
            nim_to_poly(b)
        )));
    }
}


#ifndef CP_ALGO_NUMBER_THEORY_NIMBER_HPP
#define CP_ALGO_NUMBER_THEORY_NIMBER_HPP
#include <array>
#include <bit>
#include <cstdint>
#include <immintrin.h>
#if defined(__PCLMUL__)
static constexpr bool CP_ALGO_HAS_PCLMUL=true;
#else
static constexpr bool CP_ALGO_HAS_PCLMUL=false;
#endif
static_assert(CP_ALGO_HAS_PCLMUL,"PCLMULQDQ intrinsics not available. Enable it with '-mpclmul' or add '#pragma GCC target(\"pclmul\")' or compile with '-march=native' on supported CPUs.");namespace cp_algo::math::nimber{inline constexpr std::array<uint64_t,64>BASIS_COL={0x0000000000000001ull,0x5211145c804b6109ull,0x7c8bc2cad259879full,0x565854b4c60c1e0bull,0x4068acf7104c20c3ull,0x662d2bd0f2739155ull,0x7a90c83701fa8323ull,0x21cfa750247e8755ull,0x67d1044e545abf47ull,0x4d9d3b5a8568f839ull,0x567a9d7331b6b3c6ull,0x1ca54bfdd6d1ae59ull,0x454fa483275db25cull,0x6766df6fec4e9d44ull,0x35cb621cec1fe7f9ull,0x4c606d3e52faf263ull,0x57640dc825a57954ull,0x7aca87838b7f6315ull,0x6d53c884ebf2b0edull,0x3721d998bb50164bull,0x7aa7c62fd6cd53abull,0x47cbb2c51f7c040full,0x132063b7f5e42489ull,0x0c1b36c8b2993f8aull,0x60119ecff680497aull,0x5175da444cc11791ull,0x5792ff4554765b09ull,0x0c9fdb8a01334e82ull,0x2be0a763a68a4725ull,0x3c2dc8260ad051f6ull,0x6c4c9fed8816bb9cull,0x630062753ffaf766ull,0x7b37d31b5d519225ull,0x2364f7f79705691cull,0x453eb8a83e2fec71ull,0x7c0121b37e828666ull,0x59190d3250e66011ull,0x103207f9dda18caeull,0x28233dce01c69b76ull,0x4fa519899227a5e7ull,0x4567ba46ee7bc6cdull,0x0a284773d021afd5ull,0x63894079bbe3a824ull,0x11013c7fdfaaa5c2ull,0x1aa984f18574f3b0ull,0x0cbaba126fd0c4dbull,0x0b8797719e6dc725ull,0x4a2845680aefaa72ull,0x536d2535f6934e15ull,0x01db7a57effcd689ull,0x7e1ed0ad01e2a5adull,0x0aedc9b3cee826f6ull,0x7ba716eccf9f68e1ull,0x5d5e23bc0f3dc38full,0x0b5f2a3b88674d83ull,0x2de9bafc2f00f8d4ull,0x3b56712ad419c7e0ull,0x3ab4be8c30c19253ull,0x2708522ffaa654b0ull,0x2b8bca57bf643598ull,0x588825d1a5fa8e1cull,0x86adf8bf4d45962full,0x51b4c15d8719dd73ull,0xe4a2b3b59783d0aaull};inline constexpr std::array<uint64_t,64>INV_COL={0x0000000000000001ull,0x19c9369f278adc02ull,0xa181e7d66f5ff795ull,0x5db84357ce785d09ull,0xa0bae2f9d2430cc8ull,0xb7ea5a9705b771c0ull,0xba4f3cd82801769dull,0x4886cde01b8241d0ull,0x0a6f43f2aaf612edull,0xebd0142f98030a32ull,0xa81f89cda43f3792ull,0xe99aec6b66ccb814ull,0xa69d1ff025fc2f82ull,0x48a81132d25db068ull,0x4a900f9dcaa9644full,0xe5ce4ea88259972aull,0xf7094c336029f04cull,0xe191dde287bc9c6bull,0xaacaff12bff239b8ull,0x49bc5212be1bc1caull,0xfe57defb454446cfull,0xa1dffcf944bdf6a7ull,0xb9f1bdb5cee941eeull,0x12e5e889275c22deull,0x5bcb6b117b77eeedull,0x03eb1ab59d05ae4bull,0x02a25d7076ddd386ull,0x53164a606c612245ull,0xebb33f5822f66059ull,0xe9be765f5747b93eull,0x552a78df373a354full,0xbcf5ac65f31fb8bfull,0xe411e728becdc77bull,0xf35c26d7b57cdca6ull,0x4499da83de4ca5f7ull,0x40ab25bdca4ae226ull,0xee004b6f1dff7218ull,0x0d122da9821c5b41ull,0x51fbfcb058120efeull,0xa148b1fa84905b22ull,0xbb8ed3e647604d8dull,0xe2d93fef2472776full,0x4c17a2541a10e6b5ull,0x1d879e08903708e7ull,0x0fbe7d0d1934da90ull,0x5bf977d9c6f61d30ull,0x06832fc918260412ull,0x0fe22e843ebf73e3ull,0x4d7ef4e4fa28d60dull,0x402250d979afbed5ull,0x067902b8c8ca2d4full,0xf38d113fe1d6bb16ull,0x414f0248b02b5b7dull,0xf041922915824ce9ull,0x11a72fb5e30c93d9ull,0x12e54f4d63102aeeull,0xbc46ac14b3141c6cull,0x1f172b3c16c645bbull,0x584b492ed4e8fa6cull,0x00a852e9a32cc133ull,0xa180861bce00a45eull,0xa194b6bcb4645fb9ull,0x4509002ad808a4fbull,0xc5172a0055602f69ull};template<const auto&COLS>consteval auto make_byte_tables(){std::array<std::array<uint64_t,1<<8>,8>T{};for(int pos=0;pos<8;pos++){for(int col=0;col<8;col++){for(int mask=0;mask<(1<<col);mask++){T[pos][mask|(1<<col)]=T[pos][mask]^COLS[pos*8+col];}}}return T;}inline constexpr auto INV_BYTE=make_byte_tables<INV_COL>();inline constexpr auto BASIS_BYTE=make_byte_tables<BASIS_COL>();[[gnu::always_inline]]inline uint64_t nim_to_poly(uint64_t x){auto xb=std::bit_cast<std::array<uint8_t,8>>(x);return INV_BYTE[0][xb[0]]^INV_BYTE[1][xb[1]]^INV_BYTE[2][xb[2]]^INV_BYTE[3][xb[3]]^INV_BYTE[4][xb[4]]^INV_BYTE[5][xb[5]]^INV_BYTE[6][xb[6]]^INV_BYTE[7][xb[7]];}[[gnu::always_inline]]inline uint64_t poly_to_nim(uint64_t c){auto cb=std::bit_cast<std::array<uint8_t,8>>(c);return BASIS_BYTE[0][cb[0]]^BASIS_BYTE[1][cb[1]]^BASIS_BYTE[2][cb[2]]^BASIS_BYTE[3][cb[3]]^BASIS_BYTE[4][cb[4]]^BASIS_BYTE[5][cb[5]]^BASIS_BYTE[6][cb[6]]^BASIS_BYTE[7][cb[7]];}[[gnu::always_inline]]inline __m128i clmul(int64_t a,int64_t b){return _mm_clmulepi64_si128(__m128i{a,0},__m128i{b,0},0);}[[gnu::always_inline]]inline uint64_t reduce_mod(__m128i v){v[0]^=v[1]^(v[1]<<1)^(v[1]<<3)^(v[1]<<4);static constexpr auto RED_OVER=[]{std::array<uint64_t,16>red{};for(int q=0;q<16;++q){uint64_t o=q^(q>>1)^(q>>3);red[q]=o^(o<<1)^(o<<3)^(o<<4);}return red;}();return v[0]^RED_OVER[v[1]>>60];}[[gnu::always_inline]]inline uint64_t nim_product(uint64_t a,uint64_t b){return poly_to_nim(reduce_mod(clmul(nim_to_poly(a),nim_to_poly(b))));}}
#endif
#line 1 "cp-algo/number_theory/nimber.hpp"
#include <array>
#include <bit>
#include <cstdint>
#include <immintrin.h>
#if defined(__PCLMUL__)
static constexpr bool CP_ALGO_HAS_PCLMUL=true;
#else
static constexpr bool CP_ALGO_HAS_PCLMUL=false;
#endif
static_assert(CP_ALGO_HAS_PCLMUL,"PCLMULQDQ intrinsics not available. Enable it with '-mpclmul' or add '#pragma GCC target(\"pclmul\")' or compile with '-march=native' on supported CPUs.");namespace cp_algo::math::nimber{inline constexpr std::array<uint64_t,64>BASIS_COL={0x0000000000000001ull,0x5211145c804b6109ull,0x7c8bc2cad259879full,0x565854b4c60c1e0bull,0x4068acf7104c20c3ull,0x662d2bd0f2739155ull,0x7a90c83701fa8323ull,0x21cfa750247e8755ull,0x67d1044e545abf47ull,0x4d9d3b5a8568f839ull,0x567a9d7331b6b3c6ull,0x1ca54bfdd6d1ae59ull,0x454fa483275db25cull,0x6766df6fec4e9d44ull,0x35cb621cec1fe7f9ull,0x4c606d3e52faf263ull,0x57640dc825a57954ull,0x7aca87838b7f6315ull,0x6d53c884ebf2b0edull,0x3721d998bb50164bull,0x7aa7c62fd6cd53abull,0x47cbb2c51f7c040full,0x132063b7f5e42489ull,0x0c1b36c8b2993f8aull,0x60119ecff680497aull,0x5175da444cc11791ull,0x5792ff4554765b09ull,0x0c9fdb8a01334e82ull,0x2be0a763a68a4725ull,0x3c2dc8260ad051f6ull,0x6c4c9fed8816bb9cull,0x630062753ffaf766ull,0x7b37d31b5d519225ull,0x2364f7f79705691cull,0x453eb8a83e2fec71ull,0x7c0121b37e828666ull,0x59190d3250e66011ull,0x103207f9dda18caeull,0x28233dce01c69b76ull,0x4fa519899227a5e7ull,0x4567ba46ee7bc6cdull,0x0a284773d021afd5ull,0x63894079bbe3a824ull,0x11013c7fdfaaa5c2ull,0x1aa984f18574f3b0ull,0x0cbaba126fd0c4dbull,0x0b8797719e6dc725ull,0x4a2845680aefaa72ull,0x536d2535f6934e15ull,0x01db7a57effcd689ull,0x7e1ed0ad01e2a5adull,0x0aedc9b3cee826f6ull,0x7ba716eccf9f68e1ull,0x5d5e23bc0f3dc38full,0x0b5f2a3b88674d83ull,0x2de9bafc2f00f8d4ull,0x3b56712ad419c7e0ull,0x3ab4be8c30c19253ull,0x2708522ffaa654b0ull,0x2b8bca57bf643598ull,0x588825d1a5fa8e1cull,0x86adf8bf4d45962full,0x51b4c15d8719dd73ull,0xe4a2b3b59783d0aaull};inline constexpr std::array<uint64_t,64>INV_COL={0x0000000000000001ull,0x19c9369f278adc02ull,0xa181e7d66f5ff795ull,0x5db84357ce785d09ull,0xa0bae2f9d2430cc8ull,0xb7ea5a9705b771c0ull,0xba4f3cd82801769dull,0x4886cde01b8241d0ull,0x0a6f43f2aaf612edull,0xebd0142f98030a32ull,0xa81f89cda43f3792ull,0xe99aec6b66ccb814ull,0xa69d1ff025fc2f82ull,0x48a81132d25db068ull,0x4a900f9dcaa9644full,0xe5ce4ea88259972aull,0xf7094c336029f04cull,0xe191dde287bc9c6bull,0xaacaff12bff239b8ull,0x49bc5212be1bc1caull,0xfe57defb454446cfull,0xa1dffcf944bdf6a7ull,0xb9f1bdb5cee941eeull,0x12e5e889275c22deull,0x5bcb6b117b77eeedull,0x03eb1ab59d05ae4bull,0x02a25d7076ddd386ull,0x53164a606c612245ull,0xebb33f5822f66059ull,0xe9be765f5747b93eull,0x552a78df373a354full,0xbcf5ac65f31fb8bfull,0xe411e728becdc77bull,0xf35c26d7b57cdca6ull,0x4499da83de4ca5f7ull,0x40ab25bdca4ae226ull,0xee004b6f1dff7218ull,0x0d122da9821c5b41ull,0x51fbfcb058120efeull,0xa148b1fa84905b22ull,0xbb8ed3e647604d8dull,0xe2d93fef2472776full,0x4c17a2541a10e6b5ull,0x1d879e08903708e7ull,0x0fbe7d0d1934da90ull,0x5bf977d9c6f61d30ull,0x06832fc918260412ull,0x0fe22e843ebf73e3ull,0x4d7ef4e4fa28d60dull,0x402250d979afbed5ull,0x067902b8c8ca2d4full,0xf38d113fe1d6bb16ull,0x414f0248b02b5b7dull,0xf041922915824ce9ull,0x11a72fb5e30c93d9ull,0x12e54f4d63102aeeull,0xbc46ac14b3141c6cull,0x1f172b3c16c645bbull,0x584b492ed4e8fa6cull,0x00a852e9a32cc133ull,0xa180861bce00a45eull,0xa194b6bcb4645fb9ull,0x4509002ad808a4fbull,0xc5172a0055602f69ull};template<const auto&COLS>consteval auto make_byte_tables(){std::array<std::array<uint64_t,1<<8>,8>T{};for(int pos=0;pos<8;pos++){for(int col=0;col<8;col++){for(int mask=0;mask<(1<<col);mask++){T[pos][mask|(1<<col)]=T[pos][mask]^COLS[pos*8+col];}}}return T;}inline constexpr auto INV_BYTE=make_byte_tables<INV_COL>();inline constexpr auto BASIS_BYTE=make_byte_tables<BASIS_COL>();[[gnu::always_inline]]inline uint64_t nim_to_poly(uint64_t x){auto xb=std::bit_cast<std::array<uint8_t,8>>(x);return INV_BYTE[0][xb[0]]^INV_BYTE[1][xb[1]]^INV_BYTE[2][xb[2]]^INV_BYTE[3][xb[3]]^INV_BYTE[4][xb[4]]^INV_BYTE[5][xb[5]]^INV_BYTE[6][xb[6]]^INV_BYTE[7][xb[7]];}[[gnu::always_inline]]inline uint64_t poly_to_nim(uint64_t c){auto cb=std::bit_cast<std::array<uint8_t,8>>(c);return BASIS_BYTE[0][cb[0]]^BASIS_BYTE[1][cb[1]]^BASIS_BYTE[2][cb[2]]^BASIS_BYTE[3][cb[3]]^BASIS_BYTE[4][cb[4]]^BASIS_BYTE[5][cb[5]]^BASIS_BYTE[6][cb[6]]^BASIS_BYTE[7][cb[7]];}[[gnu::always_inline]]inline __m128i clmul(int64_t a,int64_t b){return _mm_clmulepi64_si128(__m128i{a,0},__m128i{b,0},0);}[[gnu::always_inline]]inline uint64_t reduce_mod(__m128i v){v[0]^=v[1]^(v[1]<<1)^(v[1]<<3)^(v[1]<<4);static constexpr auto RED_OVER=[]{std::array<uint64_t,16>red{};for(int q=0;q<16;++q){uint64_t o=q^(q>>1)^(q>>3);red[q]=o^(o<<1)^(o<<3)^(o<<4);}return red;}();return v[0]^RED_OVER[v[1]>>60];}[[gnu::always_inline]]inline uint64_t nim_product(uint64_t a,uint64_t b){return poly_to_nim(reduce_mod(clmul(nim_to_poly(a),nim_to_poly(b))));}}
Back to top page