This documentation is automatically generated by competitive-verifier/competitive-verifier
#include "cp-algo/structures/fenwick_set.hpp"
#ifndef CP_ALGO_STRUCTURES_FENWICK_SET_HPP
#define CP_ALGO_STRUCTURES_FENWICK_SET_HPP
#include "fenwick.hpp"
#include "bit_array.hpp"
namespace cp_algo::structures {
template<size_t maxc, typename Uint = uint64_t>
using popcount_array = std::array<int, maxc / bit_width<Uint> + 1>;
// fenwick-based set for [0, maxc)
template<size_t maxc, typename Uint = uint64_t>
struct fenwick_set: fenwick<int, popcount_array<maxc, Uint>> {
using Base = fenwick<int, popcount_array<maxc, Uint>>;
static constexpr size_t word = bit_width<Uint>;
size_t sz = 0;
bit_array<maxc, Uint> bits;
fenwick_set(): Base(popcount_array<maxc, Uint>{}) {}
fenwick_set(auto &&range): fenwick_set() {
for(auto x: range) {
Base::data[x / word + 1] += 1;
if(!bits.test(x)) {
sz++;
bits.flip(x);
}
}
Base::to_prefix_sums();
}
void insert(size_t x) {
if(bits.test(x)) return;
Base::add(x / word, 1);
bits.flip(x);
sz++;
}
void erase(size_t x) {
if(!bits.test(x)) return;
Base::add(x / word, -1);
bits.flip(x);
sz--;
}
size_t order_of_key(size_t x) const {
return Base::prefix_sum(x / word) + order_of_bit(bits.word(x / word), x % word);
}
size_t find_by_order(size_t order) const {
if(order >= sz) {
return -1;
}
auto [x, remainder] = Base::prefix_lower_bound(order + 1);
return x * word + kth_set_bit(bits.word(x), remainder - 1);
}
size_t lower_bound(size_t x) const {
if(bits.test(x)) {return x;}
auto order = order_of_key(x);
return order < sz ? find_by_order(order) : -1;
}
size_t pre_upper_bound(size_t x) const {
if(bits.test(x)) {return x;}
auto order = order_of_key(x);
return order ? find_by_order(order - 1) : -1;
}
};
}
#endif // CP_ALGO_STRUCTURES_FENWICK_SET_HPP
#line 1 "cp-algo/structures/fenwick_set.hpp"
#line 1 "cp-algo/structures/fenwick.hpp"
#include <cassert>
#include <vector>
namespace cp_algo::structures {
template<typename T, typename Container = std::vector<T>>
struct fenwick {
size_t n;
Container data;
fenwick(auto &&range) {
assign(move(range));
}
void to_prefix_sums() {
for(size_t i = 1; i < n; i++) {
if(i + (i & -i) <= n) {
data[i + (i & -i)] += data[i];
}
}
}
void assign(auto &&range) {
n = size(range) - 1;
data = move(range);
to_prefix_sums();
}
void add(size_t x, T const& v) {
for(++x; x <= n; x += x & -x) {
data[x] += v;
}
}
// sum of [0, r)
T prefix_sum(size_t r) const {
assert(r <= n);
T res = 0;
for(; r; r -= r & -r) {
res += data[r];
}
return res;
}
// sum of [l, r)
T range_sum(size_t l, size_t r) const {
return prefix_sum(r) - prefix_sum(l);
}
// Last x s.t. k = prefix_sum(x) + r for r > 0
// Assumes data[x] >= 0 for all x, returns [x, r]
auto prefix_lower_bound(T k) const {
int x = 0;
for(size_t i = std::bit_floor(n); i; i /= 2) {
if(x + i <= n && data[x + i] < k) {
k -= data[x + i];
x += i;
}
}
return std::pair{x, k};
}
};
}
#line 1 "cp-algo/structures/bit_array.hpp"
#line 1 "cp-algo/util/bit.hpp"
#include <immintrin.h>
#include <cstdint>
#include <array>
#include <bit>
namespace cp_algo {
template<typename Uint>
constexpr size_t bit_width = sizeof(Uint) * 8;
size_t order_of_bit(auto x, size_t k) {
return k ? std::popcount(x << (bit_width<decltype(x)> - k)) : 0;
}
// Requires GCC target("popcnt,bmi2")
size_t kth_set_bit(uint64_t x, size_t k) {
return std::countr_zero(_pdep_u64(1ULL << k, x));
}
template<int fl = 0>
void with_bit_floor(size_t n, auto &&callback) {
if constexpr (fl >= 63) {
return;
} else if (n >> (fl + 1)) {
with_bit_floor<fl + 1>(n, callback);
} else {
callback.template operator()<1ULL << fl>();
}
}
}
#line 4 "cp-algo/structures/bit_array.hpp"
namespace cp_algo::structures {
template<size_t N, typename Uint = uint64_t>
struct bit_array {
static constexpr size_t width = bit_width<Uint>;
static constexpr size_t blocks = N / width + 1;
std::array<Uint, blocks> data = {};
uint64_t word(size_t x) const {
return data[x];
}
void set(size_t x) {
data[x / width] |= 1ULL << (x % width);
}
void flip(size_t x) {
data[x / width] ^= 1ULL << (x % width);
}
bool test(size_t x) const {
return (data[x / width] >> (x % width)) & 1;
}
bool operator[](size_t x) const {
return test(x);
}
};
}
#line 5 "cp-algo/structures/fenwick_set.hpp"
namespace cp_algo::structures {
template<size_t maxc, typename Uint = uint64_t>
using popcount_array = std::array<int, maxc / bit_width<Uint> + 1>;
// fenwick-based set for [0, maxc)
template<size_t maxc, typename Uint = uint64_t>
struct fenwick_set: fenwick<int, popcount_array<maxc, Uint>> {
using Base = fenwick<int, popcount_array<maxc, Uint>>;
static constexpr size_t word = bit_width<Uint>;
size_t sz = 0;
bit_array<maxc, Uint> bits;
fenwick_set(): Base(popcount_array<maxc, Uint>{}) {}
fenwick_set(auto &&range): fenwick_set() {
for(auto x: range) {
Base::data[x / word + 1] += 1;
if(!bits.test(x)) {
sz++;
bits.flip(x);
}
}
Base::to_prefix_sums();
}
void insert(size_t x) {
if(bits.test(x)) return;
Base::add(x / word, 1);
bits.flip(x);
sz++;
}
void erase(size_t x) {
if(!bits.test(x)) return;
Base::add(x / word, -1);
bits.flip(x);
sz--;
}
size_t order_of_key(size_t x) const {
return Base::prefix_sum(x / word) + order_of_bit(bits.word(x / word), x % word);
}
size_t find_by_order(size_t order) const {
if(order >= sz) {
return -1;
}
auto [x, remainder] = Base::prefix_lower_bound(order + 1);
return x * word + kth_set_bit(bits.word(x), remainder - 1);
}
size_t lower_bound(size_t x) const {
if(bits.test(x)) {return x;}
auto order = order_of_key(x);
return order < sz ? find_by_order(order) : -1;
}
size_t pre_upper_bound(size_t x) const {
if(bits.test(x)) {return x;}
auto order = order_of_key(x);
return order ? find_by_order(order - 1) : -1;
}
};
}