This documentation is automatically generated by competitive-verifier/competitive-verifier
#include "cp-algo/structures/fenwick_set.hpp"
#ifndef CP_ALGO_STRUCTURES_FENWICK_SET_HPP
#define CP_ALGO_STRUCTURES_FENWICK_SET_HPP
#include "fenwick.hpp"
#include "bit_array.hpp"
namespace cp_algo::structures {
template<size_t maxc, typename Uint = uint64_t>
using popcount_array = std::array<int, maxc / bit_width<Uint> + 1>;
// fenwick-based set for [0, maxc)
template<size_t maxc, typename Uint = uint64_t>
struct fenwick_set: fenwick<int, popcount_array<maxc, Uint>> {
using Base = fenwick<int, popcount_array<maxc, Uint>>;
static constexpr size_t word = bit_width<Uint>;
size_t sz = 0;
bit_array<maxc, Uint> bits;
fenwick_set(): Base(popcount_array<maxc, Uint>{}) {}
fenwick_set(auto &&range): fenwick_set() {
for(auto x: range) {
Base::data[x / word + 1] += 1;
if(!bits.test(x)) {
sz++;
bits.flip(x);
}
}
Base::to_prefix_folds();
}
void insert(size_t x) {
if(bits.test(x)) return;
Base::update(x / word, 1);
bits.flip(x);
sz++;
}
void erase(size_t x) {
if(!bits.test(x)) return;
Base::update(x / word, -1);
bits.flip(x);
sz--;
}
size_t order_of_key(size_t x) const {
return Base::prefix_fold(x / word) + order_of_bit(bits.word(x / word), x % word);
}
size_t find_by_order(size_t order) const {
if(order >= sz) {
return -1;
}
auto [x, pref] = Base::prefix_lower_bound((int)order);
return x * word + kth_set_bit(bits.word(x), order - pref);
}
size_t lower_bound(size_t x) const {
if(bits.test(x)) {return x;}
auto order = order_of_key(x);
return order < sz ? find_by_order(order) : -1;
}
size_t pre_upper_bound(size_t x) const {
if(bits.test(x)) {return x;}
auto order = order_of_key(x);
return order ? find_by_order(order - 1) : -1;
}
};
}
#endif // CP_ALGO_STRUCTURES_FENWICK_SET_HPP
#line 1 "cp-algo/structures/fenwick_set.hpp"
#line 1 "cp-algo/structures/fenwick.hpp"
#include <cassert>
#include <vector>
namespace cp_algo::structures {
template <typename Op>
struct inverse_op {};
template <typename T>
struct inverse_op<std::plus<T>> {
static T apply(T const& a, T const& b) {
return a - b;
}
};
template <typename T>
struct inverse_op<std::multiplies<T>> {
static T apply(T const& a, T const& b) {
return a / b;
}
};
template<typename T, std::ranges::range Container = std::vector<T>, typename Op = std::plus<T>>
struct fenwick {
Op op;
size_t n;
Container data;
fenwick(auto &&range, Op &&op = Op{}): op(std::move(op)) {
assign(std::move(range));
}
void to_prefix_folds() {
for(size_t i = 1; i < n; i++) {
if(i + (i & -i) <= n) {
data[i + (i & -i)] = op(data[i + (i & -i)], data[i]);
}
}
}
void assign(auto &&range) {
n = size(range) - 1;
data = std::move(range);
to_prefix_folds();
}
void update(size_t x, T const& v) {
for(++x; x <= n; x += x & -x) {
data[x] = op(data[x], v);
}
}
// fold of [0, r)
T prefix_fold(size_t r) const {
assert(r <= n);
T res = {};
for(; r; r -= r & -r) {
res = op(res, data[r]);
}
return res;
}
// fold of [l, r)
T range_fold(size_t l, size_t r) const {
return inverse_op<Op>::apply(prefix_fold(r), prefix_fold(l));
}
// Last x s.t. prefix_fold(x) <= k
// Assumes prefix_fold is monotonic
// returns [x, prefix_fold(x)]
auto prefix_lower_bound(T k) const {
size_t x = 0;
T pref = {};
for(size_t i = std::bit_floor(n); i; i /= 2) {
if(x + i <= n && op(pref, data[x + i]) <= k) {
pref = op(pref, data[x + i]);
x += i;
}
}
return std::pair{x, pref};
}
};
template<std::ranges::range Container, typename Op>
fenwick(Container&&, Op&&) -> fenwick<std::ranges::range_value_t<Container>, Container, Op>;
template<std::ranges::range Container>
fenwick(Container&&) -> fenwick<std::ranges::range_value_t<Container>, Container>;
auto maxer = [](auto const& a, auto const& b) {
return std::max(a, b);
};
template<typename T, std::ranges::range Container = std::vector<T>>
struct fenwick_max: fenwick<T, Container, decltype(maxer)> {
using fenwick<T, Container, decltype(maxer)>::fenwick;
};
template<std::ranges::range Container>
fenwick_max(Container&&) -> fenwick_max<std::ranges::range_value_t<Container>, Container>;
}
#line 1 "cp-algo/structures/bit_array.hpp"
#line 1 "cp-algo/util/bit.hpp"
#include <immintrin.h>
#include <cstdint>
#include <array>
#include <bit>
namespace cp_algo {
template<typename Uint>
constexpr size_t bit_width = sizeof(Uint) * 8;
size_t order_of_bit(auto x, size_t k) {
return k ? std::popcount(x << (bit_width<decltype(x)> - k)) : 0;
}
[[gnu::target("bmi2")]]
size_t kth_set_bit(uint64_t x, size_t k) {
return std::countr_zero(_pdep_u64(1ULL << k, x));
}
template<int fl = 0>
void with_bit_floor(size_t n, auto &&callback) {
if constexpr (fl >= 63) {
return;
} else if (n >> (fl + 1)) {
with_bit_floor<fl + 1>(n, callback);
} else {
callback.template operator()<1ULL << fl>();
}
}
}
#line 4 "cp-algo/structures/bit_array.hpp"
namespace cp_algo::structures {
template<size_t N, typename Uint = uint64_t>
struct bit_array {
static constexpr size_t width = bit_width<Uint>;
static constexpr size_t blocks = N / width + 1;
std::array<Uint, blocks> data = {};
uint64_t word(size_t x) const {
return data[x];
}
void set(size_t x) {
data[x / width] |= 1ULL << (x % width);
}
void flip(size_t x) {
data[x / width] ^= 1ULL << (x % width);
}
bool test(size_t x) const {
return (data[x / width] >> (x % width)) & 1;
}
bool operator[](size_t x) const {
return test(x);
}
};
}
#line 5 "cp-algo/structures/fenwick_set.hpp"
namespace cp_algo::structures {
template<size_t maxc, typename Uint = uint64_t>
using popcount_array = std::array<int, maxc / bit_width<Uint> + 1>;
// fenwick-based set for [0, maxc)
template<size_t maxc, typename Uint = uint64_t>
struct fenwick_set: fenwick<int, popcount_array<maxc, Uint>> {
using Base = fenwick<int, popcount_array<maxc, Uint>>;
static constexpr size_t word = bit_width<Uint>;
size_t sz = 0;
bit_array<maxc, Uint> bits;
fenwick_set(): Base(popcount_array<maxc, Uint>{}) {}
fenwick_set(auto &&range): fenwick_set() {
for(auto x: range) {
Base::data[x / word + 1] += 1;
if(!bits.test(x)) {
sz++;
bits.flip(x);
}
}
Base::to_prefix_folds();
}
void insert(size_t x) {
if(bits.test(x)) return;
Base::update(x / word, 1);
bits.flip(x);
sz++;
}
void erase(size_t x) {
if(!bits.test(x)) return;
Base::update(x / word, -1);
bits.flip(x);
sz--;
}
size_t order_of_key(size_t x) const {
return Base::prefix_fold(x / word) + order_of_bit(bits.word(x / word), x % word);
}
size_t find_by_order(size_t order) const {
if(order >= sz) {
return -1;
}
auto [x, pref] = Base::prefix_lower_bound((int)order);
return x * word + kth_set_bit(bits.word(x), order - pref);
}
size_t lower_bound(size_t x) const {
if(bits.test(x)) {return x;}
auto order = order_of_key(x);
return order < sz ? find_by_order(order) : -1;
}
size_t pre_upper_bound(size_t x) const {
if(bits.test(x)) {return x;}
auto order = order_of_key(x);
return order ? find_by_order(order - 1) : -1;
}
};
}