This documentation is automatically generated by competitive-verifier/competitive-verifier
#include "cp-algo/structures/segtree/metas/affine.hpp"
#ifndef CP_ALGO_STRUCTURES_SEGMENT_TREE_METAS_AFFINE_HPP
#define CP_ALGO_STRUCTURES_SEGMENT_TREE_METAS_AFFINE_HPP
#include "base.hpp"
#include "../../../math/affine.hpp"
namespace cp_algo::structures::segtree::metas {
template<typename base>
struct affine_meta: base_meta<affine_meta<base>> {
using meta = affine_meta;
using lin = math::lin<base>;
base sum = 0;
lin to_push = {};
affine_meta() {}
affine_meta(base sum): sum(sum) {}
void push(meta *L, meta *R, size_t l, size_t r) override {
if(to_push.a != 1 || to_push.b != 0) {
sum = to_push.a * sum + to_push.b * (r - l);
if(r - l > 1) {
L->to_push.prepend(to_push);
R->to_push.prepend(to_push);
}
to_push = {};
}
}
void pull(meta const& L, meta const& R, size_t, size_t) override {
sum = L.sum + R.sum;
}
};
}
#endif // CP_ALGO_STRUCTURES_SEGMENT_TREE_METAS_AFFINE_HPP
#line 1 "cp-algo/structures/segtree/metas/affine.hpp"
#line 1 "cp-algo/structures/segtree/metas/base.hpp"
#include <cstddef>
namespace cp_algo::structures::segtree::metas {
template<typename derived_meta>
struct base_meta {
using meta = derived_meta;
virtual void pull(meta const&, meta const&, size_t, size_t) {};
virtual void push(meta*, meta*, size_t, size_t) {};
};
}
#line 1 "cp-algo/math/affine.hpp"
#include <optional>
#include <utility>
#include <cassert>
#include <tuple>
namespace cp_algo::math {
// a * x + b
template<typename base>
struct lin {
base a = 1, b = 0;
std::optional<base> c;
lin() {}
lin(base b): a(0), b(b) {}
lin(base a, base b): a(a), b(b) {}
lin(base a, base b, base _c): a(a), b(b), c(_c) {}
// polynomial product modulo x^2 - c
lin operator * (const lin& t) {
assert(c && t.c && *c == *t.c);
return {a * t.b + b * t.a, b * t.b + a * t.a * (*c), *c};
}
// a * (t.a * x + t.b) + b
lin apply(lin const& t) const {
return {a * t.a, a * t.b + b};
}
void prepend(lin const& t) {
*this = t.apply(*this);
}
base eval(base x) const {
return a * x + b;
}
};
// (ax+b) / (cx+d)
template<typename base>
struct linfrac {
base a, b, c, d;
linfrac(): a(1), b(0), c(0), d(1) {} // x, identity for composition
linfrac(base a): a(a), b(1), c(1), d(0) {} // a + 1/x, for continued fractions
linfrac(base a, base b, base c, base d): a(a), b(b), c(c), d(d) {}
// composition of two linfracs
linfrac operator * (linfrac t) const {
return t.prepend(linfrac(*this));
}
linfrac operator-() const {
return {-a, -b, -c, -d};
}
linfrac adj() const {
return {d, -b, -c, a};
}
linfrac& prepend(linfrac const& t) {
t.apply(a, c);
t.apply(b, d);
return *this;
}
// apply linfrac to A/B
void apply(base &A, base &B) const {
std::tie(A, B) = std::pair{a * A + b * B, c * A + d * B};
}
};
}
#line 5 "cp-algo/structures/segtree/metas/affine.hpp"
namespace cp_algo::structures::segtree::metas {
template<typename base>
struct affine_meta: base_meta<affine_meta<base>> {
using meta = affine_meta;
using lin = math::lin<base>;
base sum = 0;
lin to_push = {};
affine_meta() {}
affine_meta(base sum): sum(sum) {}
void push(meta *L, meta *R, size_t l, size_t r) override {
if(to_push.a != 1 || to_push.b != 0) {
sum = to_push.a * sum + to_push.b * (r - l);
if(r - l > 1) {
L->to_push.prepend(to_push);
R->to_push.prepend(to_push);
}
to_push = {};
}
}
void pull(meta const& L, meta const& R, size_t, size_t) override {
sum = L.sum + R.sum;
}
};
}