This documentation is automatically generated by competitive-verifier/competitive-verifier
#include "cp-algo/math/affine.hpp"#ifndef CP_ALGO_MATH_AFFINE_HPP
#define CP_ALGO_MATH_AFFINE_HPP
#include <optional>
#include <utility>
#include <cassert>
#include <tuple>
namespace cp_algo::math {
// a * x + b
template<typename base>
struct lin {
base a = 1, b = 0;
std::optional<base> c;
lin() {}
lin(base b): a(0), b(b) {}
lin(base a, base b): a(a), b(b) {}
lin(base a, base b, base _c): a(a), b(b), c(_c) {}
// polynomial product modulo x^2 - c
lin operator * (const lin& t) {
assert(c && t.c && *c == *t.c);
return {a * t.b + b * t.a, b * t.b + a * t.a * (*c), *c};
}
// a * (t.a * x + t.b) + b
lin apply(lin const& t) const {
return {a * t.a, a * t.b + b};
}
void prepend(lin const& t) {
*this = t.apply(*this);
}
base eval(base x) const {
return a * x + b;
}
};
// (ax+b) / (cx+d)
template<typename base>
struct linfrac {
base a, b, c, d;
linfrac(): a(1), b(0), c(0), d(1) {} // x, identity for composition
linfrac(base a): a(a), b(1), c(1), d(0) {} // a + 1/x, for continued fractions
linfrac(base a, base b, base c, base d): a(a), b(b), c(c), d(d) {}
// composition of two linfracs
linfrac operator * (linfrac t) const {
return t.prepend(linfrac(*this));
}
linfrac operator-() const {
return {-a, -b, -c, -d};
}
linfrac adj() const {
return {d, -b, -c, a};
}
linfrac& prepend(linfrac const& t) {
t.apply(a, c);
t.apply(b, d);
return *this;
}
// apply linfrac to A/B
void apply(base &A, base &B) const {
std::tie(A, B) = std::pair{a * A + b * B, c * A + d * B};
}
};
}
#endif // CP_ALGO_MATH_AFFINE_HPP
#line 1 "cp-algo/math/affine.hpp"
#include <optional>
#include <utility>
#include <cassert>
#include <tuple>
namespace cp_algo::math {
// a * x + b
template<typename base>
struct lin {
base a = 1, b = 0;
std::optional<base> c;
lin() {}
lin(base b): a(0), b(b) {}
lin(base a, base b): a(a), b(b) {}
lin(base a, base b, base _c): a(a), b(b), c(_c) {}
// polynomial product modulo x^2 - c
lin operator * (const lin& t) {
assert(c && t.c && *c == *t.c);
return {a * t.b + b * t.a, b * t.b + a * t.a * (*c), *c};
}
// a * (t.a * x + t.b) + b
lin apply(lin const& t) const {
return {a * t.a, a * t.b + b};
}
void prepend(lin const& t) {
*this = t.apply(*this);
}
base eval(base x) const {
return a * x + b;
}
};
// (ax+b) / (cx+d)
template<typename base>
struct linfrac {
base a, b, c, d;
linfrac(): a(1), b(0), c(0), d(1) {} // x, identity for composition
linfrac(base a): a(a), b(1), c(1), d(0) {} // a + 1/x, for continued fractions
linfrac(base a, base b, base c, base d): a(a), b(b), c(c), d(d) {}
// composition of two linfracs
linfrac operator * (linfrac t) const {
return t.prepend(linfrac(*this));
}
linfrac operator-() const {
return {-a, -b, -c, -d};
}
linfrac adj() const {
return {d, -b, -c, a};
}
linfrac& prepend(linfrac const& t) {
t.apply(a, c);
t.apply(b, d);
return *this;
}
// apply linfrac to A/B
void apply(base &A, base &B) const {
std::tie(A, B) = std::pair{a * A + b * B, c * A + d * B};
}
};
}
#ifndef CP_ALGO_MATH_AFFINE_HPP
#define CP_ALGO_MATH_AFFINE_HPP
#include <optional>
#include <utility>
#include <cassert>
#include <tuple>
namespace cp_algo::math{template<typename base>struct lin{base a=1,b=0;std::optional<base>c;lin(){}lin(base b):a(0),b(b){}lin(base a,base b):a(a),b(b){}lin(base a,base b,base _c):a(a),b(b),c(_c){}lin operator*(const lin&t){assert(c&&t.c&&*c==*t.c);return{a*t.b+b*t.a,b*t.b+a*t.a*(*c),*c};}lin apply(lin const&t)const{return{a*t.a,a*t.b+b};}void prepend(lin const&t){*this=t.apply(*this);}base eval(base x)const{return a*x+b;}};template<typename base>struct linfrac{base a,b,c,d;linfrac():a(1),b(0),c(0),d(1){}linfrac(base a):a(a),b(1),c(1),d(0){}linfrac(base a,base b,base c,base d):a(a),b(b),c(c),d(d){}linfrac operator*(linfrac t)const{return t.prepend(linfrac(*this));}linfrac operator-()const{return{-a,-b,-c,-d};}linfrac adj()const{return{d,-b,-c,a};}linfrac&prepend(linfrac const&t){t.apply(a,c);t.apply(b,d);return*this;}void apply(base&A,base&B)const{std::tie(A,B)=std::pair{a*A+b*B,c*A+d*B};}};}
#endif
#line 1 "cp-algo/math/affine.hpp"
#include <optional>
#include <utility>
#include <cassert>
#include <tuple>
namespace cp_algo::math{template<typename base>struct lin{base a=1,b=0;std::optional<base>c;lin(){}lin(base b):a(0),b(b){}lin(base a,base b):a(a),b(b){}lin(base a,base b,base _c):a(a),b(b),c(_c){}lin operator*(const lin&t){assert(c&&t.c&&*c==*t.c);return{a*t.b+b*t.a,b*t.b+a*t.a*(*c),*c};}lin apply(lin const&t)const{return{a*t.a,a*t.b+b};}void prepend(lin const&t){*this=t.apply(*this);}base eval(base x)const{return a*x+b;}};template<typename base>struct linfrac{base a,b,c,d;linfrac():a(1),b(0),c(0),d(1){}linfrac(base a):a(a),b(1),c(1),d(0){}linfrac(base a,base b,base c,base d):a(a),b(b),c(c),d(d){}linfrac operator*(linfrac t)const{return t.prepend(linfrac(*this));}linfrac operator-()const{return{-a,-b,-c,-d};}linfrac adj()const{return{d,-b,-c,a};}linfrac&prepend(linfrac const&t){t.apply(a,c);t.apply(b,d);return*this;}void apply(base&A,base&B)const{std::tie(A,B)=std::pair{a*A+b*B,c*A+d*B};}};}