CP-Algorithms Library

This documentation is automatically generated by competitive-verifier/competitive-verifier

View the Project on GitHub cp-algorithms/cp-algorithms-aux

:heavy_check_mark: Characteristic Polynomial (verify/linalg/characteristic.test.cpp)

Depends on

Code

// @brief Characteristic Polynomial
#define PROBLEM "https://judge.yosupo.jp/problem/characteristic_polynomial"
#pragma GCC optimize("Ofast,unroll-loops")
#define CP_ALGO_MAXN 1 << 10
#include <bits/stdc++.h>
#include "blazingio/blazingio.min.hpp"
#include "cp-algo/linalg/frobenius.hpp"

using namespace std;
using namespace cp_algo::math;
using namespace cp_algo::linalg;

const int64_t mod = 998244353;
using base = modint<mod>;
using polyn = poly_t<base>;

void solve() {
    size_t n;
    cin >> n;
    matrix<base> A(n);
    A.read();
    auto blocks = frobenius_form(A);
    reduce(begin(blocks), end(blocks), polyn(1), multiplies{}).print();
}

signed main() {
    //freopen("input.txt", "r", stdin);
    ios::sync_with_stdio(0);
    cin.tie(0);
    int t = 1;
    //cin >> t;
    while(t--) {
        solve();
    }
}
#line 1 "verify/linalg/characteristic.test.cpp"
// @brief Characteristic Polynomial
#define PROBLEM "https://judge.yosupo.jp/problem/characteristic_polynomial"
#pragma GCC optimize("Ofast,unroll-loops")
#define CP_ALGO_MAXN 1 << 10
#include <bits/stdc++.h>
#line 1 "blazingio/blazingio.min.hpp"
// NOLINTBEGIN
// clang-format off
// DO NOT REMOVE THIS MESSAGE. The mess that follows is a minified build of
// https://github.com/purplesyringa/blazingio. Refer to the repository for
// a human-readable version and documentation.
// Options: cbfoiedrhWLMXaIaAn
#define M$(x,...)_mm256_##x##_epi8(__VA_ARGS__)
#define $u(...)__VA_ARGS__
#if __APPLE__
#define $m(A,B)A
#else
#define $m(A,B)B
#endif
#if _WIN32
#define $w(A,B)A
#else
#define $w(A,B)B
#endif
#if __i386__|_M_IX86
#define $H(A,B)A
#else
#define $H(A,B)B
#endif
#if __aarch64__
#define $a(A,B)A
#else
#define $a(A,B)B
#endif
#define $P(x)void F(x K){
#define $T template<$c T
#define $c class
#define $C constexpr
#define $R return
#define $O operator
#define u$ uint64_t
#define $r $R*this;
#line 41 "blazingio/blazingio.min.hpp"
#include $a(<arm_neon.h>,<immintrin.h>)
#line 43 "blazingio/blazingio.min.hpp"
#include $w(<windows.h>,<sys/mman.h>)
#include<sys/stat.h>
#include $w(<io.h>,<unistd.h>)
#include $w(<ios>,<sys/resource.h>)
#if _MSC_VER
#define __builtin_add_overflow(a,b,c)_addcarry_u64(0,a,b,c)
#define $s
#else
$H(,u$ _umul128(u$ a,u$ b,u$*D){auto x=(__uint128_t)a*b;*D=u$(x>>64);$R(u$)x;})
#define $s $a(,__attribute__((target("avx2"))))
#endif
#define $z $a(16,32)
#define $t $a(uint8x16_t,__m256i)
#define $I $w(__forceinline,__attribute__((always_inline)))
#define $F M(),
#define E$(x)if(!(x))abort();
$w(LONG WINAPI $x(_EXCEPTION_POINTERS*);,)namespace $f{using namespace std;struct B{enum $c A:char{}c;B&$O=(char x){c=A{x};$r}$O char(){$R(char)c;}};$C u$ C=~0ULL/255;struct D{string&K;};static B E[65568];template<int F>struct G{B*H,*S;void K(off_t C){$w(char*D=(char*)VirtualAlloc(0,(C+8191)&-4096,8192,1);E$(D)E$(VirtualFree(D,0,32768))DWORD A=C&-65536;E$(!A||MapViewOfFileEx(CreateFileMapping(GetStdHandle(-10),0,2,0,A,0),4,0,0,0,D)==D)E$(VirtualAlloc(D+A,65536,12288,4)==D+A)E$(~_lseek(0,A,0))DWORD E=0;ReadFile(GetStdHandle(-10),D+A,65536,&E,0);,int A=getpagesize();char*D=(char*)mmap(0,C+A,3,2,0,0);E$(D!=(void*)-1)E$(mmap(D+((C+A-1)&-A),A,3,$m(4114,50),-1,0)!=(void*)-1))H=(B*)D+C;*H=10;H[1]=48;H[2]=0;S=(B*)D;}void L(){H=S=E;}$I void M(){if(F&&S==H){$w(DWORD A=0;ReadFile(GetStdHandle(-10),S=E,65536,&A,0);,$a($u(register long A asm("x0")=0,D asm("x1")=(long)E,G asm("x2")=65536,C asm($m("x16","x8"))=$m(3,63);asm volatile("svc 0" $m("x80",):"+r"(A),"+r"(D):"r"(C),"r"(G));S=launder(E);),off_t A=$H(3,$m(33554435,0));B*D=E;asm volatile($H("int $128","syscall"):"+a"(A),$H("+c"(D):"b","+S"(D):"D")(0),"d"(65536)$H(,$u(:"rcx","r11")));S=D;))H=S+A;*H=10;if(!A)E[1]=48,E[2]=0;}}$T>$I void N(T&x){while($F(*S&240)==48)x=T(x*10+(*S++-48));}$T>$I decltype((void)~T{1})O(T&x){M();int A=is_signed_v<T>&&*S==45;S+=A;N(x=0);x=A?1+~x:x;}$T>$I decltype((void)T{1.})O(T&x){M();int A=*S==45;S+=A;$F S+=*S==43;u$ n=0;int i=0;for(;i<18&&($F*S&240)==48;i++)n=n*10+*S++-48;int B=20;int C=*S==46;S+=C;for(;i<18&&($F*S&240)==48;i++)n=n*10+*S++-48,B-=C;x=(T)n;while(($F*S&240)==48)x=x*10+*S++-48,B-=C;if(*S==46)S++,C=1;while(($F*S&240)==48)x=x*10+*S++-48,B-=C;int D;if((*S|32)==101)S++,$F S+=*S==43,O(D),B+=D;static $C auto E=[](){array<T,41>E{};T x=1;for(int i=21;i--;)E[40-i]=x,E[i]=1/x,x*=10;$R E;}();while(B>40)x*=(T)1e10,B-=10;while(B<0)x*=(T)1e-10,B+=10;x*=E[B];x=A?-x:x;}$I void O(bool&x){$F x=*S++==49;}$I void O(char&x){$F x=*S++;}$I void O(uint8_t&x){$F x=*S++;}$I void O(int8_t&x){$F x=*S++;}$T>$s void P(string&K,T C){M();B*G=S;C();K.assign((char*)G,S-G);while(F&&S==H&&($F H!=E)){C();K.append(E,S);}}$s void O(string&K){P(K,[&]()$s{B*p=S;$w(ULONG R;,)$t x;$a(uint64x2_t A;while(memcpy(&x,p,16),A=uint64x2_t(x<33),!(A[0]|A[1]))p+=16;S=p+(A[0]?0:8)+$w((_BitScanForward64(&R,A[0]?A[0]:A[1]),R),__builtin_ctzll(A[0]?A[0]:A[1]))/8;,int J;$t C=M$(set1,32);while(memcpy(&x,p,32),!(J=M$(movemask,M$(cmpeq,C,_mm256_max_epu8(C,x)))))p+=32;S=p+$w((_BitScanForward(&R,J),R),__builtin_ctz(J));)});}$s void O(D&A){P(A.K,[&](){S=(B*)memchr(S,10,H-S+1);});if(A.K.size()&&A.K.back()==13)A.K.pop_back();if(A.K.empty()||S<H)S+=*S==10;}$T>$I void O(complex<T>&K){T A,B{};if($F*S==40){S++;O(A);if($F*S++==44)Q(B),S++;}else O(A);K={A,B};}template<size_t N>$s void O(bitset<N>&K){if(N>4095&&!*this)$R;ptrdiff_t i=N;while(i)if($F i%$z||H-S<$z)K[--i]=*S++==49;else{B*p=S;for(int64_t j=0;j<min(i,H-S)/$z;j++){i-=$z;$t x;memcpy(&x,p,$z);$a(auto B=(uint8x16_t)vdupq_n_u64(~2ULL/254)&(48-x);auto C=vzip_u8(vget_high_u8(B),vget_low_u8(B));auto y=vaddvq_u16((uint16x8_t)vcombine_u8(C.val[0],C.val[1]));,u$ a=~0ULL/65025;auto y=$w(_byteswap_ulong,__builtin_bswap32)(M$(movemask,M$(shuffle,_mm256_slli_epi32(x,7),_mm256_set_epi64x(a+C*24,a+C*16,a+C*8,a))));)p+=$z;memcpy((char*)&K+i/8,&y,$z/8);}S=p;}}$T>$I void Q(T&K){if(!is_same_v<T,D>)while($F(uint8_t)*S<33)S++;O(K);}$O bool(){$R!!*this;}bool $O!(){$R S>H;}};struct U{G<0>A;G<1>B;U(){struct stat D;E$(~fstat(0,&D))(D.st_mode>>12)==8?A.K(D.st_size):B.L();}U*tie(nullptr_t){$R this;}void sync_with_stdio(bool){}$T>$I U&$O>>(T&K){A.S?A.Q(K):B.Q(K);$r}$O bool(){$R!!*this;}bool $O!(){$R A.S?!A:!B;}};short A[100];char L[64]{1};struct
V{char*D;B*S;int J;V(){$w(E$(D=(char*)VirtualAlloc(0,536870912,8192,4))E$(VirtualAlloc(D,4096,4096,260))AddVectoredExceptionHandler(1,$x);,size_t C=536870912;$m(,rlimit E;getrlimit(RLIMIT_AS,&E);if(~E.rlim_cur)C=25165824;)D=(char*)mmap(0,C,3,$m(4162,16418),-1,0);E$(D!=(void*)-1))S=(B*)D;for(int i=0;i<100;i++)A[i]=short((48+i/10)|((48+i%10)<<8));for(int i=1;i<64;i++)L[i]=L[i-1]+(0x8922489224892249>>i&1);}~V(){flush($w(!J,));}void flush($w(int F=0,)){$w(J=1;auto E=GetStdHandle(-11);auto C=F?ReOpenFile(E,1073741824,7,2684354560):(void*)-1;DWORD A;E$(C==(void*)-1?WriteFile(E,D,DWORD((char*)S-D),&A,0):(WriteFile(C,D,DWORD(((char*)S-D+4095)&-4096),&A,0)&&~_chsize(1,int((char*)S-D)))),auto G=D;ssize_t A;while((A=write(1,G,(char*)S-G))>0)G+=A;E$(~A))S=(B*)D;}$P(char)*S++=K;}$P(uint8_t)*S++=K;}$P(int8_t)*S++=K;}$P(bool)*S++=48+K;}$T>decltype((void)~T{1})F(T K){using D=make_unsigned_t<T>;D C=K;if(K<0)F('-'),C=1+~C;static $C auto N=[](){array<D,5*sizeof(T)/2>N{};D n=1;for(size_t i=1;i<N.size();i++)n*=10,N[i]=n;$R N;}();$w(ULONG M;,)int G=L[$w(($H(_BitScanReverse(&M,ULONG((int64_t)C>>32))?M+=32:_BitScanReverse(&M,(ULONG)C|1),_BitScanReverse64(&M,C|1)),M),63^__builtin_clzll(C|1))];G-=C<N[G-1];short H[20];if $C(sizeof(T)==2){auto n=33555U*C-C/2;u$ H=A[n>>25];n=(n&33554431)*25;H|=A[n>>23]<<16;H|=u$(48+((n&8388607)*5>>22))<<32;H>>=40-G*8;memcpy(S,&H,8);}else if $C(sizeof(T)==4){auto n=1441151881ULL*C;$H(n>>=25;n++;for(int i=0;i<5;i++){H[i]=A[n>>32];n=(n&~0U)*100;},int K=57;auto J=~0ULL>>7;for(int i=0;i<5;i++){H[i]=A[n>>K];n=(n&J)*25;K-=2;J/=4;})memcpy(S,(B*)H+10-G,16);}else{$H($u(if(C<(1ULL<<32)){$R F((uint32_t)C);}auto J=(u$)1e10;auto x=C/J,y=C%J;int K=100000,b[]{int(x/K),int(x%K),int(y/K),int(y%K)};B H[40];for(int i=0;i<4;i++){int n=int((429497ULL*b[i]>>7)+1);B*p=H+i*5;*p=48+char(n>>25);n=(n&~0U>>7)*25;memcpy(p+1,A+(n>>23),2);memcpy(p+3,A+((n&~0U>>9)*25>>21),2);}),$u(u$ D,E=_umul128(18,C,&D),F;_umul128(0x725dd1d243aba0e8,C,&F);D+=__builtin_add_overflow(E,F+1,&E);for(int i=0;i<10;i++)H[i]=A[D],E=_umul128(100,E,&D);))memcpy(S,(B*)H+20-G,20);}S+=G;}$T>decltype((void)T{1.})F(T K){if(K<0)F('-'),K=-K;auto G=[&](){auto x=u$(K*1e12);$H($u(x-=x>999999999999;uint32_t n[]{uint32_t(x/1000000*429497>>7)+1,uint32_t(x%1000000*429497>>7)+1};int K=25,J=~0U>>7;for(int i=0;i<3;i++){for(int j=0;j<2;j++)memcpy(S+i*2+j*6,A+(n[j]>>K),2),n[j]=(n[j]&J)*25;K-=2;J/=4;}S+=12;),$u(u$ D,E=_umul128(472236648287,x,&D)>>8;E|=D<<56;D>>=8;E++;for(int i=0;i<6;i++)memcpy(S,A+D,2),S+=2,E=_umul128(100,E,&D);))};if(K==0)$R F('0');if(K>=1e16){K*=(T)1e-16;int B=16;while(K>=1)K*=(T).1,B++;F("0.");G();F('e');F(B);}else if(K>=1){auto B=(u$)K;F(B);if((K-=(T)B)>0)F('.'),G();}else F("0."),G();}$P(const char*)$w(size_t A=strlen(K);memcpy((char*)S,K,A);S+=A;,S=(B*)stpcpy((char*)S,K);)}$P(const uint8_t*)F((char*)K);}$P(const int8_t*)F((char*)K);}$P(string_view)memcpy(S,K.data(),K.size());S+=K.size();}$T>$P(complex<T>)*this<<'('<<K.real()<<','<<K.imag()<<')';}template<size_t N>$s $P(const bitset<N>&)auto i=N;while(i%$z)*S++=48+K[--i];B*p=S;while(i){i-=$z;$a(short,int)x;memcpy(&x,(char*)&K+i/8,$z/8);$a(auto A=(uint8x8_t)vdup_n_u16(x);vst1q_u8((uint8_t*)p,48-vtstq_u8(vcombine_u8(vuzp2_u8(A,A),vuzp1_u8(A,A)),(uint8x16_t)vdupq_n_u64(~2ULL/254)));,auto b=_mm256_set1_epi64x(~2ULL/254);_mm256_storeu_si256(($t*)p,M$(sub,M$(set1,48),M$(cmpeq,_mm256_and_si256(M$(shuffle,_mm256_set1_epi32(x),_mm256_set_epi64x(0,C,C*2,C*3)),b),b)));)p+=$z;}S=p;}$T>V&$O<<(const T&K){F(K);$r}V&$O<<(V&(*A)(V&)){$R A(*this);}};struct W{$T>W&$O<<(const T&K){$r}W&$O<<(W&(*A)(W&)){$R A(*this);}};}namespace std{$f::U i$;$f::V o$;$f::W e$;$f::U&getline($f::U&B,string&K){$f::D A{K};$R B>>A;}$f::V&flush($f::V&B){if(!i$.A.S)B.flush();$R B;}$f::V&endl($f::V&B){$R B<<'\n'<<flush;}$f::W&endl($f::W&B){$R B;}$f::W&flush($f::W&B){$R B;}}$w(LONG WINAPI $x(_EXCEPTION_POINTERS*A){auto C=A->ExceptionRecord;auto B=C->ExceptionInformation[1];if(C->ExceptionCode==2147483649&&B-(ULONG_PTR)std::o$.D<0x40000000){E$(VirtualAlloc((char*)B,16777216,4096,4)&&VirtualAlloc((char*)(B+16777216),4096,4096,260))$R-1;}$R 0;},)
#define freopen(...)if(freopen(__VA_ARGS__)==stdin)std::i$=$f::U{}
#define cin i$
#define cout o$
#ifdef ONLINE_JUDGE
#define cerr e$
#define clog e$
#endif
// End of blazingio
// NOLINTEND
// clang-format on
#line 1 "cp-algo/linalg/frobenius.hpp"


#line 1 "cp-algo/math/poly.hpp"


#line 1 "cp-algo/math/poly/impl/euclid.hpp"


#line 1 "cp-algo/math/affine.hpp"


#include <optional>
#line 7 "cp-algo/math/affine.hpp"
namespace cp_algo::math {
    // a * x + b
    template<typename base>
    struct lin {
        base a = 1, b = 0;
        std::optional<base> c;
        lin() {}
        lin(base b): a(0), b(b) {}
        lin(base a, base b): a(a), b(b) {}
        lin(base a, base b, base _c): a(a), b(b), c(_c) {}

        // polynomial product modulo x^2 - c
        lin operator * (const lin& t) {
            assert(c && t.c && *c == *t.c);
            return {a * t.b + b * t.a, b * t.b + a * t.a * (*c), *c};
        }

        // a * (t.a * x + t.b) + b
        lin apply(lin const& t) const {
            return {a * t.a, a * t.b + b};
        }

        void prepend(lin const& t) {
            *this = t.apply(*this);
        }

        base eval(base x) const {
            return a * x + b;
        }
    };

    // (ax+b) / (cx+d)
    template<typename base>
    struct linfrac {
        base a, b, c, d;
        linfrac(): a(1), b(0), c(0), d(1) {} // x, identity for composition
        linfrac(base a): a(a), b(1), c(1), d(0) {} // a + 1/x, for continued fractions
        linfrac(base a, base b, base c, base d): a(a), b(b), c(c), d(d) {}

        // composition of two linfracs
        linfrac operator * (linfrac t) const {
            return t.prepend(linfrac(*this));
        }

        linfrac operator-() const {
            return {-a, -b, -c, -d};
        }

        linfrac adj() const {
            return {d, -b, -c, a};
        }
        
        linfrac& prepend(linfrac const& t) {
            t.apply(a, c);
            t.apply(b, d);
            return *this;
        }

        // apply linfrac to A/B
        void apply(base &A, base &B) const {
            std::tie(A, B) = std::pair{a * A + b * B, c * A + d * B};
        }
    };
}

#line 1 "cp-algo/math/fft.hpp"


#line 1 "cp-algo/number_theory/modint.hpp"


#line 1 "cp-algo/math/common.hpp"


#line 6 "cp-algo/math/common.hpp"
namespace cp_algo::math {
#ifdef CP_ALGO_MAXN
    const int maxn = CP_ALGO_MAXN;
#else
    const int maxn = 1 << 19;
#endif
    const int magic = 64; // threshold for sizes to run the naive algo

    auto bpow(auto const& x, auto n, auto const& one, auto op) {
        if(n == 0) {
            return one;
        } else {
            auto t = bpow(x, n / 2, one, op);
            t = op(t, t);
            if(n % 2) {
                t = op(t, x);
            }
            return t;
        }
    }
    auto bpow(auto x, auto n, auto ans) {
        return bpow(x, n, ans, std::multiplies{});
    }
    template<typename T>
    T bpow(T const& x, auto n) {
        return bpow(x, n, T(1));
    }
    inline constexpr auto inv2(auto x) {
        assert(x % 2);
        std::make_unsigned_t<decltype(x)> y = 1;
        while(y * x != 1) {
            y *= 2 - x * y;
        }
        return y;
    }
}

#line 6 "cp-algo/number_theory/modint.hpp"
namespace cp_algo::math {

    template<typename modint, typename _Int>
    struct modint_base {
        using Int = _Int;
        using UInt = std::make_unsigned_t<Int>;
        static constexpr size_t bits = sizeof(Int) * 8;
        using Int2 = std::conditional_t<bits <= 32, int64_t, __int128_t>;
        using UInt2 = std::conditional_t<bits <= 32, uint64_t, __uint128_t>;
        constexpr static Int mod() {
            return modint::mod();
        }
        constexpr static Int remod() {
            return modint::remod();
        }
        constexpr static UInt2 modmod() {
            return UInt2(mod()) * mod();
        }
        constexpr modint_base() = default;
        constexpr modint_base(Int2 rr) {
            to_modint().setr(UInt((rr + modmod()) % mod()));
        }
        modint inv() const {
            return bpow(to_modint(), mod() - 2);
        }
        modint operator - () const {
            modint neg;
            neg.r = std::min(-r, remod() - r);
            return neg;
        }
        modint& operator /= (const modint &t) {
            return to_modint() *= t.inv();
        }
        modint& operator *= (const modint &t) {
            r = UInt(UInt2(r) * t.r % mod());
            return to_modint();
        }
        modint& operator += (const modint &t) {
            r += t.r; r = std::min(r, r - remod());
            return to_modint();
        }
        modint& operator -= (const modint &t) {
            r -= t.r; r = std::min(r, r + remod());
            return to_modint();
        }
        modint operator + (const modint &t) const {return modint(to_modint()) += t;}
        modint operator - (const modint &t) const {return modint(to_modint()) -= t;}
        modint operator * (const modint &t) const {return modint(to_modint()) *= t;}
        modint operator / (const modint &t) const {return modint(to_modint()) /= t;}
        // Why <=> doesn't work?..
        auto operator == (const modint &t) const {return to_modint().getr() == t.getr();}
        auto operator != (const modint &t) const {return to_modint().getr() != t.getr();}
        auto operator <= (const modint &t) const {return to_modint().getr() <= t.getr();}
        auto operator >= (const modint &t) const {return to_modint().getr() >= t.getr();}
        auto operator < (const modint &t) const {return to_modint().getr() < t.getr();}
        auto operator > (const modint &t) const {return to_modint().getr() > t.getr();}
        Int rem() const {
            UInt R = to_modint().getr();
            return R - (R > (UInt)mod() / 2) * mod();
        }
        constexpr void setr(UInt rr) {
            r = rr;
        }
        constexpr UInt getr() const {
            return r;
        }

        // Only use these if you really know what you're doing!
        static UInt modmod8() {return UInt(8 * modmod());}
        void add_unsafe(UInt t) {r += t;}
        void pseudonormalize() {r = std::min(r, r - modmod8());}
        modint const& normalize() {
            if(r >= (UInt)mod()) {
                r %= mod();
            }
            return to_modint();
        }
        void setr_direct(UInt rr) {r = rr;}
        UInt getr_direct() const {return r;}
    protected:
        UInt r;
    private:
        constexpr modint& to_modint() {return static_cast<modint&>(*this);}
        constexpr modint const& to_modint() const {return static_cast<modint const&>(*this);}
    };
    template<typename modint>
    concept modint_type = std::is_base_of_v<modint_base<modint, typename modint::Int>, modint>;
    template<modint_type modint>
    decltype(std::cin)& operator >> (decltype(std::cin) &in, modint &x) {
        typename modint::UInt r;
        auto &res = in >> r;
        x.setr(r);
        return res;
    }
    template<modint_type modint>
    decltype(std::cout)& operator << (decltype(std::cout) &out, modint const& x) {
        return out << x.getr();
    }

    template<auto m>
    struct modint: modint_base<modint<m>, decltype(m)> {
        using Base = modint_base<modint<m>, decltype(m)>;
        using Base::Base;
        static constexpr Base::Int mod() {return m;}
        static constexpr Base::UInt remod() {return m;}
        auto getr() const {return Base::r;}
    };

    template<typename Int = int>
    struct dynamic_modint: modint_base<dynamic_modint<Int>, Int> {
        using Base = modint_base<dynamic_modint<Int>, Int>;
        using Base::Base;

        static Base::UInt m_reduce(Base::UInt2 ab) {
            if(mod() % 2 == 0) [[unlikely]] {
                return typename Base::UInt(ab % mod());
            } else {
                typename Base::UInt2 m = typename Base::UInt(ab) * imod();
                return typename Base::UInt((ab + m * mod()) >> Base::bits);
            }
        }
        static Base::UInt m_transform(Base::UInt a) {
            if(mod() % 2 == 0) [[unlikely]] {
                return a;
            } else {
                return m_reduce(a * pw128());
            }
        }
        dynamic_modint& operator *= (const dynamic_modint &t) {
            Base::r = m_reduce(typename Base::UInt2(Base::r) * t.r);
            return *this;
        }
        void setr(Base::UInt rr) {
            Base::r = m_transform(rr);
        }
        Base::UInt getr() const {
            typename Base::UInt res = m_reduce(Base::r);
            return std::min(res, res - mod());
        }
        static Int mod() {return m;}
        static Int remod() {return 2 * m;}
        static Base::UInt imod() {return im;}
        static Base::UInt2 pw128() {return r2;}
        static void switch_mod(Int nm) {
            m = nm;
            im = m % 2 ? inv2(-m) : 0;
            r2 = static_cast<Base::UInt>(static_cast<Base::UInt2>(-1) % m + 1);
        }

        // Wrapper for temp switching
        auto static with_mod(Int tmp, auto callback) {
            struct scoped {
                Int prev = mod();
                ~scoped() {switch_mod(prev);}
            } _;
            switch_mod(tmp);
            return callback();
        }
    private:
        static thread_local Int m;
        static thread_local Base::UInt im, r2;
    };
    template<typename Int>
    Int thread_local dynamic_modint<Int>::m = 1;
    template<typename Int>
    dynamic_modint<Int>::Base::UInt thread_local dynamic_modint<Int>::im = -1;
    template<typename Int>
    dynamic_modint<Int>::Base::UInt thread_local dynamic_modint<Int>::r2 = 0;
}

#line 1 "cp-algo/util/checkpoint.hpp"


#line 7 "cp-algo/util/checkpoint.hpp"
namespace cp_algo {
    std::map<std::string, double> checkpoints;
    template<bool final = false>
    void checkpoint([[maybe_unused]] std::string const& msg = "") {
#ifdef CP_ALGO_CHECKPOINT
        static double last = 0;
        double now = (double)clock() / CLOCKS_PER_SEC;
        double delta = now - last;
        last = now;
        if(msg.size() && !final) {
            checkpoints[msg] += delta;
        }
        if(final) {
            for(auto const& [key, value] : checkpoints) {
                std::cerr << key << ": " << value * 1000 << " ms\n";
            }
            std::cerr << "Total: " << now * 1000 << " ms\n";
        }
#endif
    }
}

#line 1 "cp-algo/random/rng.hpp"


#line 5 "cp-algo/random/rng.hpp"
namespace cp_algo::random {
    uint64_t rng() {
        static std::mt19937_64 rng(
            std::chrono::steady_clock::now().time_since_epoch().count()
        );
        return rng();
    }
}

#line 1 "cp-algo/math/cvector.hpp"


#line 1 "cp-algo/util/simd.hpp"


#include <experimental/simd>
#line 7 "cp-algo/util/simd.hpp"
namespace cp_algo {
    template<typename T, size_t len>
    using simd [[gnu::vector_size(len * sizeof(T))]] = T;
    using i64x4 = simd<int64_t, 4>;
    using u64x4 = simd<uint64_t, 4>;
    using u32x8 = simd<uint32_t, 8>;
    using i32x4 = simd<int32_t, 4>;
    using u32x4 = simd<uint32_t, 4>;
    using i16x4 = simd<int16_t, 4>;
    using u8x32 = simd<uint8_t, 32>;
    using dx4 = simd<double, 4>;

    [[gnu::target("avx2")]] inline dx4 abs(dx4 a) {
    return a < 0 ? -a : a;
    }

    // https://stackoverflow.com/a/77376595
    // works for ints in (-2^51, 2^51)
    static constexpr dx4 magic = dx4() + (3ULL << 51);
    [[gnu::target("avx2")]] inline i64x4 lround(dx4 x) {
        return i64x4(x + magic) - i64x4(magic);
    }
    [[gnu::target("avx2")]] inline dx4 to_double(i64x4 x) {
        return dx4(x + i64x4(magic)) - magic;
    }

    [[gnu::target("avx2")]] inline dx4 round(dx4 a) {
        return dx4{
            std::nearbyint(a[0]),
            std::nearbyint(a[1]),
            std::nearbyint(a[2]),
            std::nearbyint(a[3])
        };
    }

    [[gnu::target("avx2")]] inline u64x4 low32(u64x4 x) {
        return x & uint32_t(-1);
    }
    [[gnu::target("avx2")]] inline auto swap_bytes(auto x) {
        return decltype(x)(__builtin_shufflevector(u32x8(x), u32x8(x), 1, 0, 3, 2, 5, 4, 7, 6));
    }
    [[gnu::target("avx2")]] inline u64x4 montgomery_reduce(u64x4 x, uint32_t mod, uint32_t imod) {
        auto x_ninv = u64x4(_mm256_mul_epu32(__m256i(x), __m256i() + imod));
        x += u64x4(_mm256_mul_epu32(__m256i(x_ninv), __m256i() + mod));
        return swap_bytes(x);
    }

    [[gnu::target("avx2")]] inline u64x4 montgomery_mul(u64x4 x, u64x4 y, uint32_t mod, uint32_t imod) {
        return montgomery_reduce(u64x4(_mm256_mul_epu32(__m256i(x), __m256i(y))), mod, imod);
    }
    [[gnu::target("avx2")]] inline u32x8 montgomery_mul(u32x8 x, u32x8 y, uint32_t mod, uint32_t imod) {
        return u32x8(montgomery_mul(u64x4(x), u64x4(y), mod, imod)) |
               u32x8(swap_bytes(montgomery_mul(u64x4(swap_bytes(x)), u64x4(swap_bytes(y)), mod, imod)));
    }
    [[gnu::target("avx2")]] inline dx4 rotate_right(dx4 x) {
        static constexpr u64x4 shuffler = {3, 0, 1, 2};
        return __builtin_shuffle(x, shuffler);
    }

    template<std::size_t Align = 32>
    [[gnu::target("avx2")]] inline bool is_aligned(const auto* p) noexcept {
        return (reinterpret_cast<std::uintptr_t>(p) % Align) == 0;
    }

    template<class Target>
    [[gnu::target("avx2")]] inline Target& vector_cast(auto &&p) {
        return *reinterpret_cast<Target*>(std::assume_aligned<alignof(Target)>(&p));
    }
}

#line 1 "cp-algo/util/complex.hpp"


#line 5 "cp-algo/util/complex.hpp"
namespace cp_algo {
    // Custom implementation, since std::complex is UB on non-floating types
    template<typename T>
    struct complex {
        using value_type = T;
        T x, y;
        constexpr complex(): x(), y() {}
        constexpr complex(T x): x(x), y() {}
        constexpr complex(T x, T y): x(x), y(y) {}
        complex& operator *= (T t) {x *= t; y *= t; return *this;}
        complex& operator /= (T t) {x /= t; y /= t; return *this;}
        complex operator * (T t) const {return complex(*this) *= t;}
        complex operator / (T t) const {return complex(*this) /= t;}
        complex& operator += (complex t) {x += t.x; y += t.y; return *this;}
        complex& operator -= (complex t) {x -= t.x; y -= t.y; return *this;}
        complex operator * (complex t) const {return {x * t.x - y * t.y, x * t.y + y * t.x};}
        complex operator / (complex t) const {return *this * t.conj() / t.norm();}
        complex operator + (complex t) const {return complex(*this) += t;}
        complex operator - (complex t) const {return complex(*this) -= t;}
        complex& operator *= (complex t) {return *this = *this * t;}
        complex& operator /= (complex t) {return *this = *this / t;}
        complex operator - () const {return {-x, -y};}
        complex conj() const {return {x, -y};}
        T norm() const {return x * x + y * y;}
        T abs() const {return std::sqrt(norm());}
        T const real() const {return x;}
        T const imag() const {return y;}
        T& real() {return x;}
        T& imag() {return y;}
        static constexpr complex polar(T r, T theta) {return {T(r * cos(theta)), T(r * sin(theta))};}
        auto operator <=> (complex const& t) const = default;
    };
    template<typename T>
    complex<T> operator * (auto x, complex<T> y) {return y *= x;}
    template<typename T> complex<T> conj(complex<T> x) {return x.conj();}
    template<typename T> T norm(complex<T> x) {return x.norm();}
    template<typename T> T abs(complex<T> x) {return x.abs();}
    template<typename T> T& real(complex<T> &x) {return x.real();}
    template<typename T> T& imag(complex<T> &x) {return x.imag();}
    template<typename T> T const real(complex<T> const& x) {return x.real();}
    template<typename T> T const imag(complex<T> const& x) {return x.imag();}
    template<typename T>
    constexpr complex<T> polar(T r, T theta) {
        return complex<T>::polar(r, theta);
    }
    template<typename T>
    std::ostream& operator << (std::ostream &out, complex<T> x) {
        return out << x.real() << ' ' << x.imag();
    }
}

#line 1 "cp-algo/util/big_alloc.hpp"



#line 6 "cp-algo/util/big_alloc.hpp"

// Single macro to detect POSIX platforms (Linux, Unix, macOS)
#if defined(__linux__) || defined(__unix__) || (defined(__APPLE__) && defined(__MACH__))
#  define CP_ALGO_USE_MMAP 1
#  include <sys/mman.h>
#else
#  define CP_ALGO_USE_MMAP 0
#endif

namespace cp_algo {
    template <typename T, std::size_t Align = 32>
    class big_alloc {
        static_assert( Align >= alignof(void*), "Align must be at least pointer-size");
        static_assert(std::popcount(Align) == 1, "Align must be a power of two");
    public:
        using value_type = T;
        template <class U> struct rebind { using other = big_alloc<U, Align>; };
        constexpr bool operator==(const big_alloc&) const = default;
        constexpr bool operator!=(const big_alloc&) const = default;

        big_alloc() noexcept = default;
        template <typename U, std::size_t A>
        big_alloc(const big_alloc<U, A>&) noexcept {}

        [[nodiscard]] T* allocate(std::size_t n) {
            std::size_t padded = round_up(n * sizeof(T));
            std::size_t align = std::max<std::size_t>(alignof(T),  Align);
#if CP_ALGO_USE_MMAP
            if (padded >= MEGABYTE) {
                void* raw = mmap(nullptr, padded,
                                PROT_READ | PROT_WRITE,
                                MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
                madvise(raw, padded, MADV_HUGEPAGE);
                madvise(raw, padded, MADV_POPULATE_WRITE);
                return static_cast<T*>(raw);
            }
#endif
            return static_cast<T*>(::operator new(padded, std::align_val_t(align)));
        }

        void deallocate(T* p, std::size_t n) noexcept {
            if (!p) return;
            std::size_t padded = round_up(n * sizeof(T));
            std::size_t align  = std::max<std::size_t>(alignof(T),  Align);
    #if CP_ALGO_USE_MMAP
            if (padded >= MEGABYTE) { munmap(p, padded); return; }
    #endif
            ::operator delete(p, padded, std::align_val_t(align));
        }

    private:
        static constexpr std::size_t MEGABYTE = 1 << 20;
        static constexpr std::size_t round_up(std::size_t x) noexcept {
            return (x + Align - 1) / Align * Align;
        }
    };
}

#line 7 "cp-algo/math/cvector.hpp"
#include <ranges>
#include <bit>

namespace stdx = std::experimental;
namespace cp_algo::math::fft {
    static constexpr size_t flen = 4;
    using ftype = double;
    using vftype = dx4;
    using point = complex<ftype>;
    using vpoint = complex<vftype>;
    static constexpr vftype vz = {};
    vpoint vi(vpoint const& r) {
        return {-imag(r), real(r)};
    }

    struct cvector {
        std::vector<vpoint, big_alloc<vpoint>> r;
        cvector(size_t n) {
            n = std::max(flen, std::bit_ceil(n));
            r.resize(n / flen);
            checkpoint("cvector create");
        }

        vpoint& at(size_t k) {return r[k / flen];}
        vpoint at(size_t k) const {return r[k / flen];}
        template<class pt = point>
        void set(size_t k, pt t) {
            if constexpr(std::is_same_v<pt, point>) {
                real(r[k / flen])[k % flen] = real(t);
                imag(r[k / flen])[k % flen] = imag(t);
            } else {
                at(k) = t;
            }
        }
        template<class pt = point>
        pt get(size_t k) const {
            if constexpr(std::is_same_v<pt, point>) {
                return {real(r[k / flen])[k % flen], imag(r[k / flen])[k % flen]};
            } else {
                return at(k);
            }
        }

        size_t size() const {
            return flen * r.size();
        }
        static constexpr size_t eval_arg(size_t n) {
            if(n < pre_evals) {
                return eval_args[n];
            } else {
                return eval_arg(n / 2) | (n & 1) << (std::bit_width(n) - 1);
            }
        }
        static constexpr point eval_point(size_t n) {
            if(n % 2) {
                return -eval_point(n - 1);
            } else if(n % 4) {
                return eval_point(n - 2) * point(0, 1);
            } else if(n / 4 < pre_evals) {
                return evalp[n / 4];
            } else {
                return polar<ftype>(1., std::numbers::pi / (ftype)std::bit_floor(n) * (ftype)eval_arg(n));
            }
        }
        static constexpr std::array<point, 32> roots = []() {
            std::array<point, 32> res;
            for(size_t i = 2; i < 32; i++) {
                res[i] = polar<ftype>(1., std::numbers::pi / (1ull << (i - 2)));
            }
            return res;
        }();
        static constexpr point root(size_t n) {
            return roots[std::bit_width(n)];
        }
        template<int step>
        static void exec_on_eval(size_t n, size_t k, auto &&callback) {
            callback(k, root(4 * step * n) * eval_point(step * k));
        }
        template<int step>
        static void exec_on_evals(size_t n, auto &&callback) {
            point factor = root(4 * step * n);
            for(size_t i = 0; i < n; i++) {
                callback(i, factor * eval_point(step * i));
            }
        }

        void dot(cvector const& t) {
            size_t n = this->size();
            exec_on_evals<1>(n / flen, [&](size_t k, point rt) {
                k *= flen;
                auto [Ax, Ay] = at(k);
                auto Bv = t.at(k);
                vpoint res = vz;
                for (size_t i = 0; i < flen; i++) {
                    res += vpoint(vz + Ax[i], vz + Ay[i]) * Bv;
                    real(Bv) = rotate_right(real(Bv));
                    imag(Bv) = rotate_right(imag(Bv));
                    auto x = real(Bv)[0], y = imag(Bv)[0];
                    real(Bv)[0] = x * real(rt) - y * imag(rt);
                    imag(Bv)[0] = x * imag(rt) + y * real(rt);
                }
                set(k, res);
            });
            checkpoint("dot");
        }
        template<bool partial = true>
        void ifft() {
            size_t n = size();
            if constexpr (!partial) {
                point pi(0, 1);
                exec_on_evals<4>(n / 4, [&](size_t k, point rt) {
                    k *= 4;
                    point v1 = conj(rt);
                    point v2 = v1 * v1;
                    point v3 = v1 * v2;
                    auto A = get(k);
                    auto B = get(k + 1);
                    auto C = get(k + 2);
                    auto D = get(k + 3);
                    set(k, (A + B) + (C + D));
                    set(k + 2, ((A + B) - (C + D)) * v2);
                    set(k + 1, ((A - B) - pi * (C - D)) * v1);
                    set(k + 3, ((A - B) + pi * (C - D)) * v3);
                });
            }
            bool parity = std::countr_zero(n) % 2;
            if(parity) {
                exec_on_evals<2>(n / (2 * flen), [&](size_t k, point rt) {
                    k *= 2 * flen;
                    vpoint cvrt = {vz + real(rt), vz - imag(rt)};
                    auto B = at(k) - at(k + flen);
                    at(k) += at(k + flen);
                    at(k + flen) = B * cvrt;
                });
            }

            for(size_t leaf = 3 * flen; leaf < n; leaf += 4 * flen) {
                size_t level = std::countr_one(leaf + 3);
                for(size_t lvl = 4 + parity; lvl <= level; lvl += 2) {
                    size_t i = (1 << lvl) / 4;
                    exec_on_eval<4>(n >> lvl, leaf >> lvl, [&](size_t k, point rt) {
                        k <<= lvl;
                        vpoint v1 = {vz + real(rt), vz - imag(rt)};
                        vpoint v2 = v1 * v1;
                        vpoint v3 = v1 * v2;
                        for(size_t j = k; j < k + i; j += flen) {
                            auto A = at(j);
                            auto B = at(j + i);
                            auto C = at(j + 2 * i);
                            auto D = at(j + 3 * i);
                            at(j) = ((A + B) + (C + D));
                            at(j + 2 * i) = ((A + B) - (C + D)) * v2;
                            at(j +     i) = ((A - B) - vi(C - D)) * v1;
                            at(j + 3 * i) = ((A - B) + vi(C - D)) * v3;
                        }
                    });
                }
            }
            checkpoint("ifft");
            for(size_t k = 0; k < n; k += flen) {
                if constexpr (partial) {
                    set(k, get<vpoint>(k) /= vz + ftype(n / flen));
                } else {
                    set(k, get<vpoint>(k) /= vz + ftype(n));
                }
            }
        }
        template<bool partial = true>
        void fft() {
            size_t n = size();
            bool parity = std::countr_zero(n) % 2;
            for(size_t leaf = 0; leaf < n; leaf += 4 * flen) {
                size_t level = std::countr_zero(n + leaf);
                level -= level % 2 != parity;
                for(size_t lvl = level; lvl >= 4; lvl -= 2) {
                    size_t i = (1 << lvl) / 4;
                    exec_on_eval<4>(n >> lvl, leaf >> lvl, [&](size_t k, point rt) {
                        k <<= lvl;
                        vpoint v1 = {vz + real(rt), vz + imag(rt)};
                        vpoint v2 = v1 * v1;
                        vpoint v3 = v1 * v2;
                        for(size_t j = k; j < k + i; j += flen) {
                            auto A = at(j);
                            auto B = at(j + i) * v1;
                            auto C = at(j + 2 * i) * v2;
                            auto D = at(j + 3 * i) * v3;
                            at(j)         = (A + C) + (B + D);
                            at(j + i)     = (A + C) - (B + D);
                            at(j + 2 * i) = (A - C) + vi(B - D);
                            at(j + 3 * i) = (A - C) - vi(B - D);
                        }
                    });
                }
            }
            if(parity) {
                exec_on_evals<2>(n / (2 * flen), [&](size_t k, point rt) {
                    k *= 2 * flen;
                    vpoint vrt = {vz + real(rt), vz + imag(rt)};
                    auto t = at(k + flen) * vrt;
                    at(k + flen) = at(k) - t;
                    at(k) += t;
                });
            }
            if constexpr (!partial) {
                point pi(0, 1);
                exec_on_evals<4>(n / 4, [&](size_t k, point rt) {
                    k *= 4;
                    point v1 = rt;
                    point v2 = v1 * v1;
                    point v3 = v1 * v2;
                        auto A = get(k);
                        auto B = get(k + 1) * v1;
                        auto C = get(k + 2) * v2;
                        auto D = get(k + 3) * v3;
                        set(k, (A + C) + (B + D));
                        set(k + 1, (A + C) - (B + D));
                        set(k + 2, (A - C) + pi * (B - D));
                        set(k + 3, (A - C) - pi * (B - D));
                });
            }
            checkpoint("fft");
        }
        static constexpr size_t pre_evals = 1 << 16;
        static const std::array<size_t, pre_evals> eval_args;
        static const std::array<point, pre_evals> evalp;
    };

    const std::array<size_t, cvector::pre_evals> cvector::eval_args = []() {
        std::array<size_t, pre_evals> res = {};
        for(size_t i = 1; i < pre_evals; i++) {
            res[i] = res[i >> 1] | (i & 1) << (std::bit_width(i) - 1);
        }
        return res;
    }();
    const std::array<point, cvector::pre_evals> cvector::evalp = []() {
        std::array<point, pre_evals> res = {};
        res[0] = 1;
        for(size_t n = 1; n < pre_evals; n++) {
            res[n] = polar<ftype>(1., std::numbers::pi * ftype(eval_args[n]) / ftype(4 * std::bit_floor(n)));
        }
        return res;
    }();
}

#line 9 "cp-algo/math/fft.hpp"
namespace cp_algo::math::fft {
    template<modint_type base>
    struct dft {
        cvector A, B;
        static base factor, ifactor;
        using Int2 = base::Int2;
        static bool _init;
        static int split() {
            static const int splt = int(std::sqrt(base::mod())) + 1;
            return splt;
        }
        static uint32_t mod, imod;

        static void init() {
            if(!_init) {
                factor = 1 + random::rng() % (base::mod() - 1);
                ifactor = base(1) / factor;
                mod = base::mod();
                imod = -inv2<uint32_t>(base::mod());
                _init = true;
            }
        }

        dft(size_t n): A(n), B(n) {init();}
        dft(auto const& a, size_t n, bool partial = true): A(n), B(n) {
            init();
            base b2x32 = bpow(base(2), 32);
            u64x4 cur = {
                (bpow(factor, 1) * b2x32).getr(),
                (bpow(factor, 2) * b2x32).getr(),
                (bpow(factor, 3) * b2x32).getr(),
                (bpow(factor, 4) * b2x32).getr()
            };
            u64x4 step4 = u64x4{} + (bpow(factor, 4) * b2x32).getr();
            u64x4 stepn = u64x4{} + (bpow(factor, n) * b2x32).getr();
            for(size_t i = 0; i < std::min(n, std::size(a)); i += flen) {
                auto splt = [&](size_t i, auto mul) {
                    if(i >= std::size(a)) {
                        return std::pair{vftype(), vftype()};
                    }
                    u64x4 au = {
                        i < std::size(a) ? a[i].getr() : 0,
                        i + 1 < std::size(a) ? a[i + 1].getr() : 0,
                        i + 2 < std::size(a) ? a[i + 2].getr() : 0,
                        i + 3 < std::size(a) ? a[i + 3].getr() : 0
                    };
                    au = montgomery_mul(au, mul, mod, imod);
                    au = au >= base::mod() ? au - base::mod() : au;
                    auto ai = to_double(i64x4(au >= base::mod() / 2 ? au - base::mod() : au));
                    auto quo = round(ai / split());
                    return std::pair{ai - quo * split(), quo};
                };
                auto [rai, qai] = splt(i, cur);
                auto [rani, qani] = splt(n + i, montgomery_mul(cur, stepn, mod, imod));
                A.at(i) = vpoint(rai, rani);
                B.at(i) = vpoint(qai, qani);
                cur = montgomery_mul(cur, step4, mod, imod);
            }
            checkpoint("dft init");
            if(n) {
                if(partial) {
                    A.fft();
                    B.fft();
                } else {
                    A.template fft<false>();
                    B.template fft<false>();
                }
            }
        }
        template<bool overwrite = true, bool partial = true>
        void dot(auto const& C, auto const& D, auto &Aout, auto &Bout, auto &Cout) const {
            cvector::exec_on_evals<1>(A.size() / flen, [&](size_t k, point rt) {
                k *= flen;
                vpoint AC, AD, BC, BD;
                AC = AD = BC = BD = vz;
                auto Cv = C.at(k), Dv = D.at(k);
                if constexpr(partial) {
                    auto [Ax, Ay] = A.at(k);
                    auto [Bx, By] = B.at(k);
                    for (size_t i = 0; i < flen; i++) {
                        vpoint Av = {vz + Ax[i], vz + Ay[i]}, Bv = {vz + Bx[i], vz + By[i]};
                        AC += Av * Cv; AD += Av * Dv;
                        BC += Bv * Cv; BD += Bv * Dv;
                        real(Cv) = rotate_right(real(Cv));
                        imag(Cv) = rotate_right(imag(Cv));
                        real(Dv) = rotate_right(real(Dv));
                        imag(Dv) = rotate_right(imag(Dv));
                        auto cx = real(Cv)[0], cy = imag(Cv)[0];
                        auto dx = real(Dv)[0], dy = imag(Dv)[0];
                        real(Cv)[0] = cx * real(rt) - cy * imag(rt);
                        imag(Cv)[0] = cx * imag(rt) + cy * real(rt);
                        real(Dv)[0] = dx * real(rt) - dy * imag(rt);
                        imag(Dv)[0] = dx * imag(rt) + dy * real(rt);
                    }
                } else {
                    AC = A.at(k) * Cv;
                    AD = A.at(k) * Dv;
                    BC = B.at(k) * Cv;
                    BD = B.at(k) * Dv;
                }
                if constexpr (overwrite) {
                    Aout.at(k) = AC;
                    Cout.at(k) = AD + BC;
                    Bout.at(k) = BD;
                } else {
                    Aout.at(k) += AC;
                    Cout.at(k) += AD + BC;
                    Bout.at(k) += BD;
                }
            });
            checkpoint("dot");
        }

        void dot(auto &&C, auto const& D) {
            dot(C, D, A, B, C);
        }

        void recover_mod(auto &&C, auto &res, size_t k) {
            size_t check = (k + flen - 1) / flen * flen;
            assert(res.size() >= check);
            size_t n = A.size();
            auto const splitsplit = base(split() * split()).getr();
            base b2x32 = bpow(base(2), 32);
            base b2x64 = bpow(base(2), 64);
            u64x4 cur = {
                (bpow(ifactor, 2) * b2x64).getr(),
                (bpow(ifactor, 3) * b2x64).getr(),
                (bpow(ifactor, 4) * b2x64).getr(),
                (bpow(ifactor, 5) * b2x64).getr()
            };
            u64x4 step4 = u64x4{} + (bpow(ifactor, 4) * b2x32).getr();
            u64x4 stepn = u64x4{} + (bpow(ifactor, n) * b2x32).getr();
            for(size_t i = 0; i < std::min(n, k); i += flen) {
                auto [Ax, Ay] = A.at(i);
                auto [Bx, By] = B.at(i);
                auto [Cx, Cy] = C.at(i);
                auto set_i = [&](size_t i, auto A, auto B, auto C, auto mul) {
                    auto A0 = lround(A), A1 = lround(C), A2 = lround(B);
                    auto Ai = A0 + A1 * split() + A2 * splitsplit + uint64_t(base::modmod());
                    auto Au = montgomery_reduce(u64x4(Ai), mod, imod);
                    Au = montgomery_mul(Au, mul, mod, imod);
                    Au = Au >= base::mod() ? Au - base::mod() : Au;
                    for(size_t j = 0; j < flen; j++) {
                        res[i + j].setr(typename base::UInt(Au[j]));
                    }
                };
                set_i(i, Ax, Bx, Cx, cur);
                if(i + n < k) {
                    set_i(i + n, Ay, By, Cy, montgomery_mul(cur, stepn, mod, imod));
                }
                cur = montgomery_mul(cur, step4, mod, imod);
            }
            checkpoint("recover mod");
        }

        void mul(auto &&C, auto const& D, auto &res, size_t k) {
            assert(A.size() == C.size());
            size_t n = A.size();
            if(!n) {
                res = {};
                return;
            }
            dot(C, D);
            A.ifft();
            B.ifft();
            C.ifft();
            recover_mod(C, res, k);
        }
        void mul_inplace(auto &&B, auto& res, size_t k) {
            mul(B.A, B.B, res, k);
        }
        void mul(auto const& B, auto& res, size_t k) {
            mul(cvector(B.A), B.B, res, k);
        }
        std::vector<base, big_alloc<base>> operator *= (dft &B) {
            std::vector<base, big_alloc<base>> res(2 * A.size());
            mul_inplace(B, res, 2 * A.size());
            return res;
        }
        std::vector<base, big_alloc<base>> operator *= (dft const& B) {
            std::vector<base, big_alloc<base>> res(2 * A.size());
            mul(B, res, 2 * A.size());
            return res;
        }
        auto operator * (dft const& B) const {
            return dft(*this) *= B;
        }

        point operator [](int i) const {return A.get(i);}
    };
    template<modint_type base> base dft<base>::factor = 1;
    template<modint_type base> base dft<base>::ifactor = 1;
    template<modint_type base> bool dft<base>::_init = false;
    template<modint_type base> uint32_t dft<base>::mod = {};
    template<modint_type base> uint32_t dft<base>::imod = {};
    
    void mul_slow(auto &a, auto const& b, size_t k) {
        if(std::empty(a) || std::empty(b)) {
            a.clear();
        } else {
            size_t n = std::min(k, std::size(a));
            size_t m = std::min(k, std::size(b));
            a.resize(k);
            for(int j = int(k - 1); j >= 0; j--) {
                a[j] *= b[0];
                for(int i = std::max(j - (int)n, 0) + 1; i < std::min(j + 1, (int)m); i++) {
                    a[j] += a[j - i] * b[i];
                }
            }
        }
    }
    size_t com_size(size_t as, size_t bs) {
        if(!as || !bs) {
            return 0;
        }
        return std::max(flen, std::bit_ceil(as + bs - 1) / 2);
    }
    void mul_truncate(auto &a, auto const& b, size_t k) {
        using base = std::decay_t<decltype(a[0])>;
        if(std::min({k, std::size(a), std::size(b)}) < magic) {
            mul_slow(a, b, k);
            return;
        }
        auto n = std::max(flen, std::bit_ceil(
            std::min(k, std::size(a)) + std::min(k, std::size(b)) - 1
        ) / 2);
        auto A = dft<base>(a | std::views::take(k), n);
        auto B = dft<base>(b | std::views::take(k), n);
        a.resize((k + flen - 1) / flen * flen);
        A.mul_inplace(B, a, k);
        a.resize(k);
    }

    // store mod x^n-k in first half, x^n+k in second half
    void mod_split(auto &&x, size_t n, auto k) {
        using base = std::decay_t<decltype(k)>;
        dft<base>::init();
        assert(std::size(x) == 2 * n);
        u64x4 cur = u64x4{} + (k * bpow(base(2), 32)).getr();
        for(size_t i = 0; i < n; i += flen) {
            u64x4 xl = {
                x[i].getr(),
                x[i + 1].getr(),
                x[i + 2].getr(),
                x[i + 3].getr()
            };
            u64x4 xr = {
                x[n + i].getr(),
                x[n + i + 1].getr(),
                x[n + i + 2].getr(),
                x[n + i + 3].getr()
            };
            xr = montgomery_mul(xr, cur, dft<base>::mod, dft<base>::imod);
            xr = xr >= base::mod() ? xr - base::mod() : xr;
            auto t = xr;
            xr = xl - t;
            xl += t;
            xl = xl >= base::mod() ? xl - base::mod() : xl;
            xr = xr >= base::mod() ? xr + base::mod() : xr;
            for(size_t k = 0; k < flen; k++) {
                x[i + k].setr(typename base::UInt(xl[k]));
                x[n + i + k].setr(typename base::UInt(xr[k]));
            }
        }
        cp_algo::checkpoint("mod split");
    }
    void cyclic_mul(auto &a, auto &&b, size_t k) {
        assert(std::popcount(k) == 1);
        assert(std::size(a) == std::size(b) && std::size(a) == k);
        using base = std::decay_t<decltype(a[0])>;
        dft<base>::init();
        if(k <= (1 << 16)) {
            auto ap = std::ranges::to<std::vector<base, big_alloc<base>>>(a);
            mul_truncate(ap, b, 2 * k);
            mod_split(ap, k, bpow(dft<base>::factor, k));
            std::ranges::copy(ap | std::views::take(k), begin(a));
            return;
        }
        k /= 2;
        auto factor = bpow(dft<base>::factor, k);
        mod_split(a, k, factor);
        mod_split(b, k, factor);
        auto la = std::span(a).first(k);
        auto lb = std::span(b).first(k);
        auto ra = std::span(a).last(k);
        auto rb = std::span(b).last(k);
        cyclic_mul(la, lb, k);
        auto A = dft<base>(ra, k / 2);
        auto B = dft<base>(rb, k / 2);
        A.mul_inplace(B, ra, k);
        base i2 = base(2).inv();
        factor = factor.inv() * i2;
        for(size_t i = 0; i < k; i++) {
            auto t = (a[i] + a[i + k]) * i2;
            a[i + k] = (a[i] - a[i + k]) * factor;
            a[i] = t;
        }
        cp_algo::checkpoint("mod join");
    }
    auto make_copy(auto &&x) {
        return x;
    }
    void cyclic_mul(auto &a, auto const& b, size_t k) {
        return cyclic_mul(a, make_copy(b), k);
    }
    void mul(auto &a, auto &&b) {
        size_t N = size(a) + size(b);
        if(N > (1 << 20)) {
            N--;
            size_t NN = std::bit_ceil(N);
            a.resize(NN);
            b.resize(NN);
            cyclic_mul(a, b, NN);
            a.resize(N);
        } else {
            mul_truncate(a, b, N - 1);
        }
    }
    void mul(auto &a, auto const& b) {
        size_t N = size(a) + size(b);
        if(N > (1 << 20)) {
            mul(a, make_copy(b));
        } else {
            mul_truncate(a, b, N - 1);
        }
    }
}

#line 12 "cp-algo/math/poly/impl/euclid.hpp"
// operations related to gcd and Euclidean algo
namespace cp_algo::math::poly::impl {
    template<typename poly>
    using gcd_result = std::pair<
        std::list<std::decay_t<poly>>,
        linfrac<std::decay_t<poly>>>;

    template<typename poly>
    gcd_result<poly> half_gcd(poly &&A, poly &&B) {
        assert(A.deg() >= B.deg());
        size_t m = size(A.a) / 2;
        if(B.deg() < (int)m) {
            return {};
        }
        auto [ai, R] = A.divmod(B);
        std::tie(A, B) = {B, R};
        std::list a = {ai};
        auto T = -linfrac(ai).adj();

        auto advance = [&](size_t k) {
            auto [ak, Tk] = half_gcd(A.div_xk(k), B.div_xk(k));
            a.splice(end(a), ak);
            T.prepend(Tk);
            return Tk;
        };
        advance(m).apply(A, B);
        if constexpr (std::is_reference_v<poly>) {
            advance(2 * m - A.deg()).apply(A, B);
        } else {
            advance(2 * m - A.deg());
        }
        return {std::move(a), std::move(T)};
    }
    template<typename poly>
    gcd_result<poly> full_gcd(poly &&A, poly &&B) {
        using poly_t = std::decay_t<poly>;
        std::list<poly_t> ak;
        std::vector<linfrac<poly_t>> trs;
        while(!B.is_zero()) {
            auto [a0, R] = A.divmod(B);
            ak.push_back(a0);
            trs.push_back(-linfrac(a0).adj());
            std::tie(A, B) = {B, R};

            auto [a, Tr] = half_gcd(A, B);
            ak.splice(end(ak), a);
            trs.push_back(Tr);
        }
        return {ak, std::accumulate(rbegin(trs), rend(trs), linfrac<poly_t>{}, std::multiplies{})};
    }

    // computes product of linfrac on [L, R)
    auto convergent(auto L, auto R) {
        using poly = decltype(L)::value_type;
        if(R == next(L)) {
            return linfrac(*L);
        } else {
            int s = std::transform_reduce(L, R, 0, std::plus{}, std::mem_fn(&poly::deg));
            auto M = L;
            for(int c = M->deg(); 2 * c <= s; M++) {
                c += next(M)->deg();
            }
            return convergent(L, M) * convergent(M, R);
        }
    }
    template<typename poly>
    poly min_rec(poly const& p, size_t d) {
        auto R2 = p.mod_xk(d).reversed(d), R1 = poly::xk(d);
        if(R2.is_zero()) {
            return poly(1);
        }
        auto [a, Tr] = full_gcd(R1, R2);
        a.emplace_back();
        auto pref = begin(a);
        for(int delta = (int)d - a.front().deg(); delta >= 0; pref++) {
            delta -= pref->deg() + next(pref)->deg();
        }
        return convergent(begin(a), pref).a;
    }

    template<typename poly>
    std::optional<poly> inv_mod(poly p, poly q) {
        assert(!q.is_zero());
        auto [a, Tr] = full_gcd(q, p);
        if(q.deg() != 0) {
            return std::nullopt;
        }
        return Tr.b / q[0];
    }
}

#line 1 "cp-algo/math/poly/impl/div.hpp"


#line 6 "cp-algo/math/poly/impl/div.hpp"
// operations related to polynomial division
namespace cp_algo::math::poly::impl {
    auto divmod_slow(auto const& p, auto const& q) {
        auto R = p;
        auto D = decltype(p){};
        auto q_lead_inv = q.lead().inv();
        while(R.deg() >= q.deg()) {
            D.a.push_back(R.lead() * q_lead_inv);
            if(D.lead() != 0) {
                for(size_t i = 1; i <= q.a.size(); i++) {
                    R.a[R.a.size() - i] -= D.lead() * q.a[q.a.size() - i];
                }
            }
            R.a.pop_back();
        }
        std::ranges::reverse(D.a);
        R.normalize();
        return std::array{D, R};
    }
    template<typename poly>
    auto divmod_hint(poly const& p, poly const& q, poly const& qri) {
        assert(!q.is_zero());
        int d = p.deg() - q.deg();
        if(std::min(d, q.deg()) < magic) {
            return divmod_slow(p, q);
        }
        poly D;
        if(d >= 0) {
            D = (p.reversed().mod_xk(d + 1) * qri.mod_xk(d + 1)).mod_xk(d + 1).reversed(d + 1);
        }
        return std::array{D, p - D * q};
    }
    auto divmod(auto const& p, auto const& q) {
        assert(!q.is_zero());
        int d = p.deg() - q.deg();
        if(std::min(d, q.deg()) < magic) {
            return divmod_slow(p, q);
        }
        return divmod_hint(p, q, q.reversed().inv(d + 1));
    }

    template<typename poly>
    poly powmod_hint(poly const& p, int64_t k, poly const& md, poly const& mdri) {
        return bpow(p, k, poly(1), [&](auto const& p, auto const& q){
            return divmod_hint(p * q, md, mdri)[1];
        });
    }
    template<typename poly>
    auto powmod(poly const& p, int64_t k, poly const& md) {
        int d = md.deg();
        if(p == poly::xk(1) && false) { // does it actually speed anything up?..
            if(k < md.deg()) {
                return poly::xk(k);
            } else {
                auto mdr = md.reversed();
                return (mdr.inv(k - md.deg() + 1, md.deg()) * mdr).reversed(md.deg());
            }
        }
        if(md == poly::xk(d)) {
            return p.pow(k, d);
        }
        if(md == poly::xk(d) - poly(1)) {
            return p.powmod_circular(k, d);
        }
        return powmod_hint(p, k, md, md.reversed().inv(md.deg() + 1));
    }
    template<typename poly>
    poly& inv_inplace(poly& q, int64_t k, size_t n) {
        using poly_t = std::decay_t<poly>;
        using base = poly_t::base;
        if(k <= std::max<int64_t>(n, size(q.a))) {
            return q.inv_inplace(k + n).div_xk_inplace(k);
        }
        if(k % 2) {
            return inv_inplace(q, k - 1, n + 1).div_xk_inplace(1);
        }
        auto [q0, q1] = q.bisect();
        auto qq = q0 * q0 - (q1 * q1).mul_xk_inplace(1);
        inv_inplace(qq, k / 2 - q.deg() / 2, (n + 1) / 2 + q.deg() / 2);
        size_t N = fft::com_size(size(q0.a), size(qq.a));
        auto q0f = fft::dft<base>(q0.a, N);
        auto q1f = fft::dft<base>(q1.a, N);
        auto qqf = fft::dft<base>(qq.a, N);
        size_t M = q0.deg() + (n + 1) / 2;
        typename poly::Vector A, B;
        A.resize((M + fft::flen - 1) / fft::flen * fft::flen);
        B.resize((M + fft::flen - 1) / fft::flen * fft::flen);
        q0f.mul(qqf, A, M);
        q1f.mul_inplace(qqf, B, M);
        q.a.resize(n + 1);
        for(size_t i = 0; i < n; i += 2) {
            q.a[i] = A[q0.deg() + i / 2];
            q.a[i + 1] = -B[q0.deg() + i / 2];
        }
        q.a.pop_back();
        q.normalize();
        return q;
    }
    template<typename poly>
    poly& inv_inplace(poly& p, size_t n) {
        using poly_t = std::decay_t<poly>;
        using base = poly_t::base;
        if(n == 1) {
            return p = base(1) / p[0];
        }
        // Q(-x) = P0(x^2) + xP1(x^2)
        auto [q0, q1] = p.bisect(n);
        
        size_t N = fft::com_size(size(q0.a), (n + 1) / 2);
        
        auto q0f = fft::dft<base>(q0.a, N);
        auto q1f = fft::dft<base>(q1.a, N);

        // Q(x)*Q(-x) = Q0(x^2)^2 - x^2 Q1(x^2)^2
        auto qq = poly_t(q0f * q0f) - poly_t(q1f * q1f).mul_xk_inplace(1);

        inv_inplace(qq, (n + 1) / 2);
        auto qqf = fft::dft<base>(qq.a, N);
        
        typename poly::Vector A, B;
        A.resize(((n + 1) / 2 + fft::flen - 1) / fft::flen * fft::flen);
        B.resize(((n + 1) / 2 + fft::flen - 1) / fft::flen * fft::flen);
        q0f.mul(qqf, A, (n + 1) / 2);
        q1f.mul_inplace(qqf, B, (n + 1) / 2);
        p.a.resize(n + 1);
        for(size_t i = 0; i < n; i += 2) {
            p.a[i] = A[i / 2];
            p.a[i + 1] = -B[i / 2];
        }
        p.a.pop_back();
        p.normalize();
        return p;
    }
}

#line 1 "cp-algo/math/combinatorics.hpp"


#line 6 "cp-algo/math/combinatorics.hpp"
namespace cp_algo::math {
    // fact/rfact/small_inv are caching
    // Beware of usage with dynamic mod
    template<typename T>
    T fact(auto n) {
        static std::vector<T> F(maxn);
        static bool init = false;
        if(!init) {
            F[0] = T(1);
            for(int i = 1; i < maxn; i++) {
                F[i] = F[i - 1] * T(i);
            }
            init = true;
        }
        return F[n];
    }
    // Only works for modint types
    template<typename T>
    T rfact(auto n) {
        static std::vector<T> F(maxn);
        static bool init = false;
        if(!init) {
            int t = (int)std::min<int64_t>(T::mod(), maxn) - 1;
            F[t] = T(1) / fact<T>(t);
            for(int i = t - 1; i >= 0; i--) {
                F[i] = F[i + 1] * T(i + 1);
            }
            init = true;
        }
        return F[n];
    }
    template<typename T, int base>
    T pow_fixed(int n) {
        static std::vector<T> prec_low(1 << 16);
        static std::vector<T> prec_high(1 << 16);
        static bool init = false;
        if(!init) {
            init = true;
            prec_low[0] = prec_high[0] = T(1);
            T step_low = T(base);
            T step_high = bpow(T(base), 1 << 16);
            for(int i = 1; i < (1 << 16); i++) {
                prec_low[i] = prec_low[i - 1] * step_low;
                prec_high[i] = prec_high[i - 1] * step_high;
            }
        }
        return prec_low[n & 0xFFFF] * prec_high[n >> 16];
    }
    template<typename T>
    std::vector<T> bulk_invs(auto const& args) {
        std::vector<T> res(std::size(args), args[0]);
        for(size_t i = 1; i < std::size(args); i++) {
            res[i] = res[i - 1] * args[i];
        }
        auto all_invs = T(1) / res.back();
        for(size_t i = std::size(args) - 1; i > 0; i--) {
            res[i] = all_invs * res[i - 1];
            all_invs *= args[i];
        }
        res[0] = all_invs;
        return res;
    }
    template<typename T>
    T small_inv(auto n) {
        static auto F = bulk_invs<T>(std::views::iota(1, maxn));
        return F[n - 1];
    }
    template<typename T>
    T binom_large(T n, auto r) {
        assert(r < maxn);
        T ans = 1;
        for(decltype(r) i = 0; i < r; i++) {
            ans = ans * T(n - i) * small_inv<T>(i + 1);
        }
        return ans;
    }
    template<typename T>
    T binom(auto n, auto r) {
        if(r < 0 || r > n) {
            return T(0);
        } else if(n >= maxn) {
            return binom_large(T(n), r);
        } else {
            return fact<T>(n) * rfact<T>(r) * rfact<T>(n - r);
        }
    }
}

#line 1 "cp-algo/number_theory/discrete_sqrt.hpp"


#line 6 "cp-algo/number_theory/discrete_sqrt.hpp"
namespace cp_algo::math {
    // https://en.wikipedia.org/wiki/Berlekamp-Rabin_algorithm
    template<modint_type base>
    std::optional<base> sqrt(base b) {
        if(b == base(0)) {
            return base(0);
        } else if(bpow(b, (b.mod() - 1) / 2) != base(1)) {
            return std::nullopt;
        } else {
            while(true) {
                base z = random::rng();
                if(z * z == b) {
                    return z;
                }
                lin<base> x(1, z, b); // x + z (mod x^2 - b)
                x = bpow(x, (b.mod() - 1) / 2, lin<base>(0, 1, b));
                if(x.a != base(0)) {
                    return x.a.inv();
                }
            }
        }
    }
}

#line 15 "cp-algo/math/poly.hpp"
namespace cp_algo::math {
    template<typename T, class Alloc = big_alloc<T>>
    struct poly_t {
        using Vector = std::vector<T, Alloc>;
        using base = T;
        Vector a;
        
        poly_t& normalize() {
            while(deg() >= 0 && lead() == base(0)) {
                a.pop_back();
            }
            return *this;
        }
        
        poly_t(){}
        poly_t(T a0): a{a0} {normalize();}
        poly_t(Vector const& t): a(t) {normalize();}
        poly_t(Vector &&t): a(std::move(t)) {normalize();}
        
        poly_t& negate_inplace() {
            std::ranges::transform(a, begin(a), std::negate{});
            return *this;
        }
        poly_t operator -() const {
            return poly_t(*this).negate_inplace();
        }
        poly_t& operator += (poly_t const& t) {
            a.resize(std::max(size(a), size(t.a)));
            std::ranges::transform(a, t.a, begin(a), std::plus{});
            return normalize();
        }
        poly_t& operator -= (poly_t const& t) {
            a.resize(std::max(size(a), size(t.a)));
            std::ranges::transform(a, t.a, begin(a), std::minus{});
            return normalize();
        }
        poly_t operator + (poly_t const& t) const {return poly_t(*this) += t;}
        poly_t operator - (poly_t const& t) const {return poly_t(*this) -= t;}
        
        poly_t& mod_xk_inplace(size_t k) {
            a.resize(std::min(size(a), k));
            return normalize();
        }
        poly_t& mul_xk_inplace(size_t k) {
            a.insert(begin(a), k, T(0));
            return normalize();
        }
        poly_t& div_xk_inplace(int64_t k) {
            if(k < 0) {
                return mul_xk_inplace(-k);
            }
            a.erase(begin(a), begin(a) + std::min<size_t>(k, size(a)));
            return normalize();
        }
        poly_t &substr_inplace(size_t l, size_t k) {
            return mod_xk_inplace(l + k).div_xk_inplace(l);
        }
        poly_t mod_xk(size_t k) const {return poly_t(*this).mod_xk_inplace(k);}
        poly_t mul_xk(size_t k) const {return poly_t(*this).mul_xk_inplace(k);}
        poly_t div_xk(int64_t k) const {return poly_t(*this).div_xk_inplace(k);}
        poly_t substr(size_t l, size_t k) const {return poly_t(*this).substr_inplace(l, k);}
        
        poly_t& operator *= (const poly_t &t) {fft::mul(a, t.a); normalize(); return *this;}
        poly_t operator * (const poly_t &t) const {return poly_t(*this) *= t;}

        poly_t& operator /= (const poly_t &t) {return *this = divmod(t)[0];}
        poly_t& operator %= (const poly_t &t) {return *this = divmod(t)[1];}
        poly_t operator / (poly_t const& t) const {return poly_t(*this) /= t;}
        poly_t operator % (poly_t const& t) const {return poly_t(*this) %= t;}

        poly_t& operator *= (T const& x) {
            for(auto &it: a) {
                it *= x;
            }
            return normalize();
        }
        poly_t& operator /= (T const& x) {return *this *= x.inv();}
        poly_t operator * (T const& x) const {return poly_t(*this) *= x;}
        poly_t operator / (T const& x) const {return poly_t(*this) /= x;}
        
        poly_t& reverse(size_t n) {
            a.resize(n);
            std::ranges::reverse(a);
            return normalize();
        }
        poly_t& reverse() {return reverse(size(a));}
        poly_t reversed(size_t n) const {return poly_t(*this).reverse(n);}
        poly_t reversed() const {return poly_t(*this).reverse();}
        
        std::array<poly_t, 2> divmod(poly_t const& b) const {
            return poly::impl::divmod(*this, b);
        }
        
        // reduces A/B to A'/B' such that
        // deg B' < deg A / 2
        static std::pair<std::list<poly_t>, linfrac<poly_t>> half_gcd(auto &&A, auto &&B) {
            return poly::impl::half_gcd(A, B);
        }
        // reduces A / B to gcd(A, B) / 0
        static std::pair<std::list<poly_t>, linfrac<poly_t>> full_gcd(auto &&A, auto &&B) {
            return poly::impl::full_gcd(A, B);
        }
        static poly_t gcd(poly_t &&A, poly_t &&B) {
            full_gcd(A, B);
            return A;
        }
        
        // Returns a (non-monic) characteristic polynomial
        // of the minimum linear recurrence for the sequence
        poly_t min_rec(size_t d) const {
            return poly::impl::min_rec(*this, d);
        }
        
        // calculate inv to *this modulo t
        std::optional<poly_t> inv_mod(poly_t const& t) const {
            return poly::impl::inv_mod(*this, t);
        };
        
        poly_t negx() const { // A(x) -> A(-x)
            auto res = *this;
            for(int i = 1; i <= deg(); i += 2) {
                res.a[i] = -res[i];
            }
            return res;
        }
        
        void print(int n) const {
            for(int i = 0; i < n; i++) {
                std::cout << (*this)[i] << ' ';
            }
            std::cout << "\n";
        }
        
        void print() const {
            print(deg() + 1);
        }
        
        T eval(T x) const { // evaluates in single point x
            T res(0);
            for(int i = deg(); i >= 0; i--) {
                res *= x;
                res += a[i];
            }
            return res;
        }
        
        T lead() const { // leading coefficient
            assert(!is_zero());
            return a.back();
        }
        
        int deg() const { // degree, -1 for P(x) = 0
            return (int)a.size() - 1;
        }
        
        bool is_zero() const {
            return a.empty();
        }
        
        T operator [](int idx) const {
            return idx < 0 || idx > deg() ? T(0) : a[idx];
        }
        
        T& coef(size_t idx) { // mutable reference at coefficient
            return a[idx];
        }
        
        bool operator == (const poly_t &t) const {return a == t.a;}
        bool operator != (const poly_t &t) const {return a != t.a;}
        
        poly_t& deriv_inplace(int k = 1) {
            if(deg() + 1 < k) {
                return *this = poly_t{};
            }
            for(int i = k; i <= deg(); i++) {
                a[i - k] = fact<T>(i) * rfact<T>(i - k) * a[i];
            }
            a.resize(deg() + 1 - k);
            return *this;
        }
        poly_t deriv(int k = 1) const { // calculate derivative
            return poly_t(*this).deriv_inplace(k);
        }

        poly_t& integr_inplace() {
            a.push_back(0);
            for(int i = deg() - 1; i >= 0; i--) {
                a[i + 1] = a[i] * small_inv<T>(i + 1);
            }
            a[0] = 0;
            return *this;
        }
        poly_t integr() const { // calculate integral with C = 0
            Vector res(deg() + 2);
            for(int i = 0; i <= deg(); i++) {
                res[i + 1] = a[i] * small_inv<T>(i + 1);
            }
            return res;
        }
        
        size_t trailing_xk() const { // Let p(x) = x^k * t(x), return k
            if(is_zero()) {
                return -1;
            }
            int res = 0;
            while(a[res] == T(0)) {
                res++;
            }
            return res;
        }
        
        // calculate log p(x) mod x^n
        poly_t& log_inplace(size_t n) {
            assert(a[0] == T(1));
            mod_xk_inplace(n);
            return (inv_inplace(n) *= mod_xk_inplace(n).deriv()).mod_xk_inplace(n - 1).integr_inplace();
        }
        poly_t log(size_t n) const {
            return poly_t(*this).log_inplace(n);
        }
        
        poly_t& mul_truncate(poly_t const& t, size_t k) {
            fft::mul_truncate(a, t.a, k);
            return normalize();
        }

        poly_t& exp_inplace(size_t n) {
            if(is_zero()) {
                return *this = T(1);
            }
            assert(a[0] == T(0));
            a[0] = 1;
            size_t a = 1;
            while(a < n) {
                poly_t C = log(2 * a).div_xk_inplace(a) - substr(a, 2 * a);
                *this -= C.mul_truncate(*this, a).mul_xk_inplace(a);
                a *= 2;
            }
            return mod_xk_inplace(n);
        }

        poly_t exp(size_t n) const { // calculate exp p(x) mod x^n
            return poly_t(*this).exp_inplace(n);
        }
        
        poly_t pow_bin(int64_t k, size_t n) const { // O(n log n log k)
            if(k == 0) {
                return poly_t(1).mod_xk(n);
            } else {
                auto t = pow(k / 2, n);
                t = (t * t).mod_xk(n);
                return (k % 2 ? *this * t : t).mod_xk(n);
            }
        }

        poly_t circular_closure(size_t m) const {
            if(deg() == -1) {
                return *this;
            }
            auto t = *this;
            for(size_t i = t.deg(); i >= m; i--) {
                t.a[i - m] += t.a[i];
            }
            t.a.resize(std::min(t.a.size(), m));
            return t;
        }

        static poly_t mul_circular(poly_t const& a, poly_t const& b, size_t m) {
            return (a.circular_closure(m) * b.circular_closure(m)).circular_closure(m);
        }

        poly_t powmod_circular(int64_t k, size_t m) const {
            if(k == 0) {
                return poly_t(1);
            } else {
                auto t = powmod_circular(k / 2, m);
                t = mul_circular(t, t, m);
                if(k % 2) {
                    t = mul_circular(t, *this, m);
                }
                return t;
            }
        }
        
        poly_t powmod(int64_t k, poly_t const& md) const {
            return poly::impl::powmod(*this, k, md);
        }
        
        // O(d * n) with the derivative trick from
        // https://codeforces.com/blog/entry/73947?#comment-581173
        poly_t pow_dn(int64_t k, size_t n) const {
            if(n == 0) {
                return poly_t(T(0));
            }
            assert((*this)[0] != T(0));
            Vector Q(n);
            Q[0] = bpow(a[0], k);
            auto a0inv = a[0].inv();
            for(int i = 1; i < (int)n; i++) {
                for(int j = 1; j <= std::min(deg(), i); j++) {
                    Q[i] += a[j] * Q[i - j] * (T(k) * T(j) - T(i - j));
                }
                Q[i] *= small_inv<T>(i) * a0inv;
            }
            return Q;
        }
        
        // calculate p^k(n) mod x^n in O(n log n)
        // might be quite slow due to high constant
        poly_t pow(int64_t k, size_t n) const {
            if(is_zero()) {
                return k ? *this : poly_t(1);
            }
            size_t i = trailing_xk();
            if(i > 0) {
                return k >= int64_t(n + i - 1) / (int64_t)i ? poly_t(T(0)) : div_xk(i).pow(k, n - i * k).mul_xk(i * k);
            }
            if(std::min(deg(), (int)n) <= magic) {
                return pow_dn(k, n);
            }
            if(k <= magic) {
                return pow_bin(k, n);
            }
            T j = a[i];
            poly_t t = *this / j;
            return bpow(j, k) * (t.log(n) * T(k)).exp(n).mod_xk(n);
        }
        
        // returns std::nullopt if undefined
        std::optional<poly_t> sqrt(size_t n) const {
            if(is_zero()) {
                return *this;
            }
            size_t i = trailing_xk();
            if(i % 2) {
                return std::nullopt;
            } else if(i > 0) {
                auto ans = div_xk(i).sqrt(n - i / 2);
                return ans ? ans->mul_xk(i / 2) : ans;
            }
            auto st = math::sqrt((*this)[0]);
            if(st) {
                poly_t ans = *st;
                size_t a = 1;
                while(a < n) {
                    a *= 2;
                    ans -= (ans - mod_xk(a) * ans.inv(a)).mod_xk(a) / 2;
                }
                return ans.mod_xk(n);
            }
            return std::nullopt;
        }
        
        poly_t mulx(T a) const { // component-wise multiplication with a^k
            T cur = 1;
            poly_t res(*this);
            for(int i = 0; i <= deg(); i++) {
                res.coef(i) *= cur;
                cur *= a;
            }
            return res;
        }

        poly_t mulx_sq(T a) const { // component-wise multiplication with a^{k choose 2}
            T cur = 1, total = 1;
            poly_t res(*this);
            for(int i = 0; i <= deg(); i++) {
                res.coef(i) *= total;
                cur *= a;
                total *= cur;
            }
            return res;
        }

        // be mindful of maxn, as the function
        // requires multiplying polynomials of size deg() and n+deg()!
        poly_t chirpz(T z, int n) const { // P(1), P(z), P(z^2), ..., P(z^(n-1))
            if(is_zero()) {
                return Vector(n, 0);
            }
            if(z == T(0)) {
                Vector ans(n, (*this)[0]);
                if(n > 0) {
                    ans[0] = accumulate(begin(a), end(a), T(0));
                }
                return ans;
            }
            auto A = mulx_sq(z.inv());
            auto B = ones(n+deg()).mulx_sq(z);
            return semicorr(B, A).mod_xk(n).mulx_sq(z.inv());
        }

        // res[i] = prod_{1 <= j <= i} 1/(1 - z^j)
        static auto _1mzk_prod_inv(T z, int n) {
            Vector res(n, 1), zk(n);
            zk[0] = 1;
            for(int i = 1; i < n; i++) {
                zk[i] = zk[i - 1] * z;
                res[i] = res[i - 1] * (T(1) - zk[i]);
            }
            res.back() = res.back().inv();
            for(int i = n - 2; i >= 0; i--) {
                res[i] = (T(1) - zk[i+1]) * res[i+1];
            }
            return res;
        }
        
        // prod_{0 <= j < n} (1 - z^j x)
        static auto _1mzkx_prod(T z, int n) {
            if(n == 1) {
                return poly_t(Vector{1, -1});
            } else {
                auto t = _1mzkx_prod(z, n / 2);
                t *= t.mulx(bpow(z, n / 2));
                if(n % 2) {
                    t *= poly_t(Vector{1, -bpow(z, n - 1)});
                }
                return t;
            }
        }

        poly_t chirpz_inverse(T z, int n) const { // P(1), P(z), P(z^2), ..., P(z^(n-1))
            if(is_zero()) {
                return {};
            }
            if(z == T(0)) {
                if(n == 1) {
                    return *this;
                } else {
                    return Vector{(*this)[1], (*this)[0] - (*this)[1]};
                }
            }
            Vector y(n);
            for(int i = 0; i < n; i++) {
                y[i] = (*this)[i];
            }
            auto prods_pos = _1mzk_prod_inv(z, n);
            auto prods_neg = _1mzk_prod_inv(z.inv(), n);

            T zn = bpow(z, n-1).inv();
            T znk = 1;
            for(int i = 0; i < n; i++) {
                y[i] *= znk * prods_neg[i] * prods_pos[(n - 1) - i];
                znk *= zn;
            }

            poly_t p_over_q = poly_t(y).chirpz(z, n);
            poly_t q = _1mzkx_prod(z, n);

            return (p_over_q * q).mod_xk_inplace(n).reverse(n);
        }

        static poly_t build(std::vector<poly_t> &res, int v, auto L, auto R) { // builds evaluation tree for (x-a1)(x-a2)...(x-an)
            if(R - L == 1) {
                return res[v] = Vector{-*L, 1};
            } else {
                auto M = L + (R - L) / 2;
                return res[v] = build(res, 2 * v, L, M) * build(res, 2 * v + 1, M, R);
            }
        }

        poly_t to_newton(std::vector<poly_t> &tree, int v, auto l, auto r) {
            if(r - l == 1) {
                return *this;
            } else {
                auto m = l + (r - l) / 2;
                auto A = (*this % tree[2 * v]).to_newton(tree, 2 * v, l, m);
                auto B = (*this / tree[2 * v]).to_newton(tree, 2 * v + 1, m, r);
                return A + B.mul_xk(m - l);
            }
        }

        poly_t to_newton(Vector p) {
            if(is_zero()) {
                return *this;
            }
            size_t n = p.size();
            std::vector<poly_t> tree(4 * n);
            build(tree, 1, begin(p), end(p));
            return to_newton(tree, 1, begin(p), end(p));
        }

        Vector eval(std::vector<poly_t> &tree, int v, auto l, auto r) { // auxiliary evaluation function
            if(r - l == 1) {
                return {eval(*l)};
            } else {
                auto m = l + (r - l) / 2;
                auto A = (*this % tree[2 * v]).eval(tree, 2 * v, l, m);
                auto B = (*this % tree[2 * v + 1]).eval(tree, 2 * v + 1, m, r);
                A.insert(end(A), begin(B), end(B));
                return A;
            }
        }
        
        Vector eval(Vector x) { // evaluate polynomial in (x1, ..., xn)
            size_t n = x.size();
            if(is_zero()) {
                return Vector(n, T(0));
            }
            std::vector<poly_t> tree(4 * n);
            build(tree, 1, begin(x), end(x));
            return eval(tree, 1, begin(x), end(x));
        }
        
        poly_t inter(std::vector<poly_t> &tree, int v, auto ly, auto ry) { // auxiliary interpolation function
            if(ry - ly == 1) {
                return {*ly / a[0]};
            } else {
                auto my = ly + (ry - ly) / 2;
                auto A = (*this % tree[2 * v]).inter(tree, 2 * v, ly, my);
                auto B = (*this % tree[2 * v + 1]).inter(tree, 2 * v + 1, my, ry);
                return A * tree[2 * v + 1] + B * tree[2 * v];
            }
        }
        
        static auto inter(Vector x, Vector y) { // interpolates minimum polynomial from (xi, yi) pairs
            size_t n = x.size();
            std::vector<poly_t> tree(4 * n);
            return build(tree, 1, begin(x), end(x)).deriv().inter(tree, 1, begin(y), end(y));
        }

        static auto resultant(poly_t a, poly_t b) { // computes resultant of a and b
            if(b.is_zero()) {
                return 0;
            } else if(b.deg() == 0) {
                return bpow(b.lead(), a.deg());
            } else {
                int pw = a.deg();
                a %= b;
                pw -= a.deg();
                auto mul = bpow(b.lead(), pw) * T((b.deg() & a.deg() & 1) ? -1 : 1);
                auto ans = resultant(b, a);
                return ans * mul;
            }
        }
                
        static poly_t xk(size_t n) { // P(x) = x^n
            return poly_t(T(1)).mul_xk(n);
        }
        
        static poly_t ones(size_t n) { // P(x) = 1 + x + ... + x^{n-1} 
            return Vector(n, 1);
        }
        
        static poly_t expx(size_t n) { // P(x) = e^x (mod x^n)
            return ones(n).borel();
        }

        static poly_t log1px(size_t n) { // P(x) = log(1+x) (mod x^n)
            Vector coeffs(n, 0);
            for(size_t i = 1; i < n; i++) {
                coeffs[i] = (i & 1 ? T(i).inv() : -T(i).inv());
            }
            return coeffs;
        }

        static poly_t log1mx(size_t n) { // P(x) = log(1-x) (mod x^n)
            return -ones(n).integr();
        }
        
        // [x^k] (a corr b) = sum_{i} a{(k-m)+i}*bi
        static poly_t corr(poly_t const& a, poly_t const& b) { // cross-correlation
            return a * b.reversed();
        }

        // [x^k] (a semicorr b) = sum_i a{i+k} * b{i}
        static poly_t semicorr(poly_t const& a, poly_t const& b) {
            return corr(a, b).div_xk(b.deg());
        }
        
        poly_t invborel() const { // ak *= k!
            auto res = *this;
            for(int i = 0; i <= deg(); i++) {
                res.coef(i) *= fact<T>(i);
            }
            return res;
        }
        
        poly_t borel() const { // ak /= k!
            auto res = *this;
            for(int i = 0; i <= deg(); i++) {
                res.coef(i) *= rfact<T>(i);
            }
            return res;
        }
        
        poly_t shift(T a) const { // P(x + a)
            return semicorr(invborel(), expx(deg() + 1).mulx(a)).borel();
        }
        
        poly_t x2() { // P(x) -> P(x^2)
            Vector res(2 * a.size());
            for(size_t i = 0; i < a.size(); i++) {
                res[2 * i] = a[i];
            }
            return res;
        }
        
        // Return {P0, P1}, where P(x) = P0(x) + xP1(x)
        std::array<poly_t, 2> bisect(size_t n) const {
            n = std::min(n, size(a));
            Vector res[2];
            for(size_t i = 0; i < n; i++) {
                res[i % 2].push_back(a[i]);
            }
            return {res[0], res[1]};
        }
        std::array<poly_t, 2> bisect() const {
            return bisect(size(a));
        }
        
        // Find [x^k] P / Q
        static T kth_rec_inplace(poly_t &P, poly_t &Q, int64_t k) {
            while(k > Q.deg()) {
                size_t n = Q.a.size();
                auto [Q0, Q1] = Q.bisect();
                auto [P0, P1] = P.bisect();
                
                size_t N = fft::com_size((n + 1) / 2, (n + 1) / 2);
                
                auto Q0f = fft::dft<T>(Q0.a, N);
                auto Q1f = fft::dft<T>(Q1.a, N);
                auto P0f = fft::dft<T>(P0.a, N);
                auto P1f = fft::dft<T>(P1.a, N);
                
                Q = poly_t(Q0f * Q0f) -= poly_t(Q1f * Q1f).mul_xk_inplace(1);
                if(k % 2) {
                    P = poly_t(Q0f *= P1f) -= poly_t(Q1f *= P0f);
                } else {
                    P = poly_t(Q0f *= P0f) -= poly_t(Q1f *= P1f).mul_xk_inplace(1);
                }
                k /= 2;
            }
            return (P *= Q.inv_inplace(Q.deg() + 1))[(int)k];
        }
        static T kth_rec(poly_t const& P, poly_t const& Q, int64_t k) {
            return kth_rec_inplace(poly_t(P), poly_t(Q), k);
        }

        // inverse series mod x^n
        poly_t& inv_inplace(size_t n) {
            return poly::impl::inv_inplace(*this, n);
        }
        poly_t inv(size_t n) const {
            return poly_t(*this).inv_inplace(n);
        }
        // [x^k]..[x^{k+n-1}] of inv()
        // supports negative k if k+n >= 0
        poly_t& inv_inplace(int64_t k, size_t n) {
            return poly::impl::inv_inplace(*this, k, n);
        }
        poly_t inv(int64_t k, size_t n) const {
            return poly_t(*this).inv_inplace(k, n);
        }
        
        // compute A(B(x)) mod x^n in O(n^2)
        static poly_t compose(poly_t A, poly_t B, int n) {
            int q = std::sqrt(n);
            std::vector<poly_t> Bk(q);
            auto Bq = B.pow(q, n);
            Bk[0] = poly_t(T(1));
            for(int i = 1; i < q; i++) {
                Bk[i] = (Bk[i - 1] * B).mod_xk(n);
            }
            poly_t Bqk(1);
            poly_t ans;
            for(int i = 0; i <= n / q; i++) {
                poly_t cur;
                for(int j = 0; j < q; j++) {
                    cur += Bk[j] * A[i * q + j];
                }
                ans += (Bqk * cur).mod_xk(n);
                Bqk = (Bqk * Bq).mod_xk(n);
            }
            return ans;
        }
        
        // compute A(B(x)) mod x^n in O(sqrt(pqn log^3 n))
        // preferrable when p = deg A and q = deg B
        // are much less than n
        static poly_t compose_large(poly_t A, poly_t B, int n) {
            if(B[0] != T(0)) {
                return compose_large(A.shift(B[0]), B - B[0], n);
            }
            
            int q = std::sqrt(n);
            auto [B0, B1] = std::make_pair(B.mod_xk(q), B.div_xk(q));
            
            B0 = B0.div_xk(1);
            std::vector<poly_t> pw(A.deg() + 1);
            auto getpow = [&](int k) {
                return pw[k].is_zero() ? pw[k] = B0.pow(k, n - k) : pw[k];
            };
            
            std::function<poly_t(poly_t const&, int, int)> compose_dac = [&getpow, &compose_dac](poly_t const& f, int m, int N) {
                if(f.deg() <= 0) {
                    return f;
                }
                int k = m / 2;
                auto [f0, f1] = std::make_pair(f.mod_xk(k), f.div_xk(k));
                auto [A, B] = std::make_pair(compose_dac(f0, k, N), compose_dac(f1, m - k, N - k));
                return (A + (B.mod_xk(N - k) * getpow(k).mod_xk(N - k)).mul_xk(k)).mod_xk(N);
            };
            
            int r = n / q;
            auto Ar = A.deriv(r);
            auto AB0 = compose_dac(Ar, Ar.deg() + 1, n);
            
            auto Bd = B0.mul_xk(1).deriv();
            
            poly_t ans = T(0);
            
            std::vector<poly_t> B1p(r + 1);
            B1p[0] = poly_t(T(1));
            for(int i = 1; i <= r; i++) {
                B1p[i] = (B1p[i - 1] * B1.mod_xk(n - i * q)).mod_xk(n - i * q);
            }
            while(r >= 0) {
                ans += (AB0.mod_xk(n - r * q) * rfact<T>(r) * B1p[r]).mul_xk(r * q).mod_xk(n);
                r--;
                if(r >= 0) {
                    AB0 = ((AB0 * Bd).integr() + A[r] * fact<T>(r)).mod_xk(n);
                }
            }
            
            return ans;
        }
    };
    template<typename base>
    static auto operator * (const auto& a, const poly_t<base>& b) {
        return b * a;
    }
};

#line 1 "cp-algo/linalg/matrix.hpp"


#line 1 "cp-algo/linalg/vector.hpp"


#line 15 "cp-algo/linalg/vector.hpp"
namespace cp_algo::linalg {
    template<typename base, class Alloc = big_alloc<base>>
    struct vec: std::basic_string<base, std::char_traits<base>, Alloc> {
        using Base = std::basic_string<base, std::char_traits<base>, Alloc>;
        using Base::Base;

        vec(Base const& t): Base(t) {}
        vec(Base &&t): Base(std::move(t)) {}
        vec(size_t n): Base(n, base()) {}
        vec(auto &&r): Base(std::ranges::to<Base>(r)) {}

        static vec ei(size_t n, size_t i) {
            vec res(n);
            res[i] = 1;
            return res;
        }

        auto operator-() const {
            return *this | std::views::transform([](auto x) {return -x;});
        }
        auto operator *(base t) const {
            return *this | std::views::transform([t](auto x) {return x * t;});
        }
        auto operator *=(base t) {
            for(auto &it: *this) {
                it *= t;
            }
            return *this;
        }

        virtual void add_scaled(vec const& b, base scale, size_t i = 0) {
            if(scale != base(0)) {
                for(; i < size(*this); i++) {
                    (*this)[i] += scale * b[i];
                }
            }
        }
        virtual vec const& normalize() {
            return static_cast<vec&>(*this);
        }
        virtual base normalize(size_t i) {
            return (*this)[i];
        }
        void read() {
            for(auto &it: *this) {
                std::cin >> it;
            }
        }
        void print() const {
            for(auto &it: *this) {
                std::cout << it << " ";
            }
            std::cout << "\n";
        }
        static vec random(size_t n) {
            vec res(n);
            std::ranges::generate(res, random::rng);
            return res;
        }
        // Concatenate vectors
        vec operator |(vec const& t) const {
            return std::views::join(std::array{
                std::views::all(*this),
                std::views::all(t)
            });
        }

        // Generally, vec shouldn't be modified
        // after its pivot index is set
        std::pair<size_t, base> find_pivot() {
            if(pivot == size_t(-1)) {
                pivot = 0;
                while(pivot < size(*this) && normalize(pivot) == base(0)) {
                    pivot++;
                }
                if(pivot < size(*this)) {
                    pivot_inv = base(1) / (*this)[pivot];
                }
            }
            return {pivot, pivot_inv};
        }
        void reduce_by(vec &t) {
            auto [pivot, pinv] = t.find_pivot();
            if(pivot < size(*this)) {
                add_scaled(t, -normalize(pivot) * pinv, pivot);
            }
        }
    private:
        size_t pivot = -1;
        base pivot_inv;
    };

    template<math::modint_type base, class Alloc = big_alloc<base>>
    struct modint_vec: vec<base, Alloc> {
        using Base = vec<base, Alloc>;
        using Base::Base;

        modint_vec(Base const& t): Base(t) {}
        modint_vec(Base &&t): Base(std::move(t)) {}

        void add_scaled(Base const& b, base scale, size_t i = 0) override {
            static_assert(base::bits >= 64, "Only wide modint types for linalg");
            if(scale != base(0)) {
                assert(Base::size() == b.size());
                size_t n = size(*this);
                u64x4 scaler = u64x4() + scale.getr();
                if (is_aligned(&(*this)[0]) && is_aligned(&b[0])) // verify we're not in SSO
                for(i -= i % 4; i + 3 < n; i += 4) {
                    auto &ai = vector_cast<u64x4>((*this)[i]);
                    auto bi = vector_cast<u64x4 const>(b[i]);
#ifdef __AVX2__
                    ai += u64x4(_mm256_mul_epu32(__m256i(scaler), __m256i(bi)));
#else
                    ai += scaler * bi;
#endif
                }
                for(; i < n; i++) {
                    (*this)[i].add_unsafe(b[i].getr_direct() * scale.getr());
                }
                if(++counter == 4) {
                    for(auto &it: *this) {
                        it.pseudonormalize();
                    }
                    counter = 0;
                }
            }
        }
        Base const& normalize() override {
            for(auto &it: *this) {
                it.normalize();
            }
            return *this;
        }
        base normalize(size_t i) override {
            return (*this)[i].normalize();
        }
    private:
        size_t counter = 0;
    };
}

#line 11 "cp-algo/linalg/matrix.hpp"
namespace cp_algo::linalg {
    enum gauss_mode {normal, reverse};

    template<typename base_t, class _vec_t = std::conditional_t<
        math::modint_type<base_t>,
        modint_vec<base_t>,
        vec<base_t>>>
    struct matrix: std::vector<_vec_t> {
        using vec_t = _vec_t;
        using base = base_t;
        using Base = std::vector<vec_t>;
        using Base::Base;

        matrix(size_t n): Base(n, vec_t(n)) {}
        matrix(size_t n, size_t m): Base(n, vec_t(m)) {}

        matrix(Base const& t): Base(t) {}
        matrix(Base &&t): Base(std::move(t)) {}
        
        template<std::ranges::input_range R>
        matrix(R &&r): Base(std::ranges::to<Base>(std::forward<R>(r))) {}

        size_t n() const {return size(*this);}
        size_t m() const {return n() ? size(row(0)) : 0;}
        
        void resize(size_t n, size_t m) {
            Base::resize(n);
            for(auto &it: *this) {
                it.resize(m);
            }
        }

        auto& row(size_t i) {return (*this)[i];}
        auto const& row(size_t i) const {return (*this)[i];}

        auto elements() {return *this | std::views::join;}
        auto elements() const {return *this | std::views::join;}

        matrix operator-() const {
            return *this | std::views::transform([](auto x) {return vec_t(-x);});
        }
        matrix& operator+=(matrix const& t) {
            for(auto [a, b]: std::views::zip(elements(), t.elements())) {
                a += b;
            }
            return *this;
        }
        matrix& operator -=(matrix const& t) {
            for(auto [a, b]: std::views::zip(elements(), t.elements())) {
                a -= b;
            }
            return *this;
        }
        matrix operator+(matrix const& t) const {return matrix(*this) += t;}
        matrix operator-(matrix const& t) const {return matrix(*this) -= t;}
        
        matrix& operator *=(base t) {for(auto &it: *this) it *= t; return *this;}
        matrix operator *(base t) const {return matrix(*this) *= t;}
        matrix& operator /=(base t) {return *this *= base(1) / t;}
        matrix operator /(base t) const {return matrix(*this) /= t;}

        // Make sure the result is matrix, not Base
        matrix& operator *=(matrix const& t) {return *this = *this * t;}

        void read_transposed() {
            for(size_t j = 0; j < m(); j++) {
                for(size_t i = 0; i < n(); i++) {
                    std::cin >> (*this)[i][j];
                }
            }
        }
        void read() {
            for(auto &it: *this) {
                it.read();
            }
        }
        void print() const {
            for(auto const& it: *this) {
                it.print();
            }
        }

        static matrix block_diagonal(std::vector<matrix> const& blocks) {
            size_t n = 0;
            for(auto &it: blocks) {
                assert(it.n() == it.m());
                n += it.n();
            }
            matrix res(n);
            n = 0;
            for(auto &it: blocks) {
                for(size_t i = 0; i < it.n(); i++) {
                    std::ranges::copy(it[i], begin(res[n + i]) + n);
                }
                n += it.n();
            }
            return res;
        }
        static matrix random(size_t n, size_t m) {
            matrix res(n, m);
            std::ranges::generate(res, std::bind(vec_t::random, m));
            return res;
        }
        static matrix random(size_t n) {
            return random(n, n);
        }
        static matrix eye(size_t n) {
            matrix res(n);
            for(size_t i = 0; i < n; i++) {
                res[i][i] = 1;
            }
            return res;
        }

        // Concatenate matrices
        matrix operator |(matrix const& b) const {
            assert(n() == b.n());
            matrix res(n(), m()+b.m());
            for(size_t i = 0; i < n(); i++) {
                res[i] = row(i) | b[i];
            }
            return res;
        }
        void assign_submatrix(auto viewx, auto viewy, matrix const& t) {
            for(auto [a, b]: std::views::zip(*this | viewx, t)) {
                std::ranges::copy(b, begin(a | viewy));
            }
        }
        auto submatrix(auto viewx, auto viewy) const {
            return *this | viewx | std::views::transform([viewy](auto const& y) {
                return y | viewy;
            });
        }

        matrix T() const {
            matrix res(m(), n());
            for(size_t i = 0; i < n(); i++) {
                for(size_t j = 0; j < m(); j++) {
                    res[j][i] = row(i)[j];
                }
            }
            return res;
        }

        matrix operator *(matrix const& b) const {
            assert(m() == b.n());
            matrix res(n(), b.m());
            for(size_t i = 0; i < n(); i++) {
                for(size_t j = 0; j < m(); j++) {
                    res[i].add_scaled(b[j], row(i)[j]);
                }
            }
            return res.normalize();
        }

        vec_t apply(vec_t const& x) const {
            return (matrix(1, x) * *this)[0];
        }

        matrix pow(uint64_t k) const {
            assert(n() == m());
            return bpow(*this, k, eye(n()));
        }

        matrix& normalize() {
            for(auto &it: *this) {
                it.normalize();
            }
            return *this;
        }
        template<gauss_mode mode = normal>
        void eliminate(size_t i, size_t k) {
            auto kinv = base(1) / row(i).normalize()[k];
            for(size_t j = (mode == normal) * i; j < n(); j++) {
                if(j != i) {
                    row(j).add_scaled(row(i), -row(j).normalize(k) * kinv);
                }
            }
        }
        template<gauss_mode mode = normal>
        void eliminate(size_t i) {
            row(i).normalize();
            for(size_t j = (mode == normal) * i; j < n(); j++) {
                if(j != i) {
                    row(j).reduce_by(row(i));
                }
            }
        }
        template<gauss_mode mode = normal>
        matrix& gauss() {
            for(size_t i = 0; i < n(); i++) {
                eliminate<mode>(i);
            }
            return normalize();
        }
        template<gauss_mode mode = normal>
        auto echelonize(size_t lim) {
            return gauss<mode>().sort_classify(lim);
        }
        template<gauss_mode mode = normal>
        auto echelonize() {
            return echelonize<mode>(m());
        }

        size_t rank() const {
            if(n() > m()) {
                return T().rank();
            }
            return size(matrix(*this).echelonize()[0]);
        }

        base det() const {
            assert(n() == m());
            matrix b = *this;
            b.echelonize();
            base res = 1;
            for(size_t i = 0; i < n(); i++) {
                res *= b[i][i];
            }
            return res;
        }

        std::pair<base, matrix> inv() const {
            assert(n() == m());
            matrix b = *this | eye(n());
            if(size(b.echelonize<reverse>(n())[0]) < n()) {
                return {0, {}};
            }
            base det = 1;
            for(size_t i = 0; i < n(); i++) {
                det *= b[i][i];
                b[i] *= base(1) / b[i][i];
            }
            return {det, b.submatrix(std::views::all, std::views::drop(n()))};
        }

        // Can also just run gauss on T() | eye(m)
        // but it would be slower :(
        auto kernel() const {
            auto A = *this;
            auto [pivots, free] = A.template echelonize<reverse>();
            matrix sols(size(free), m());
            for(size_t j = 0; j < size(pivots); j++) {
                base scale = base(1) / A[j][pivots[j]];
                for(size_t i = 0; i < size(free); i++) {
                    sols[i][pivots[j]] = A[j][free[i]] * scale;
                }
            }
            for(size_t i = 0; i < size(free); i++) {
                sols[i][free[i]] = -1;
            }
            return sols;
        }

        // [solution, basis], transposed
        std::optional<std::array<matrix, 2>> solve(matrix t) const {
            matrix sols = (*this | t).kernel();
            if(sols.n() < t.m() || matrix(sols.submatrix(
                std::views::drop(sols.n() - t.m()),
                std::views::drop(m())
            )) != -eye(t.m())) {
                return std::nullopt;
            } else {
                return std::array{
                    matrix(sols.submatrix(std::views::drop(sols.n() - t.m()), std::views::take(m()))),
                    matrix(sols.submatrix(std::views::take(sols.n() - t.m()), std::views::take(m())))
                };
            }
        }

        // To be called after a gaussian elimination run
        // Sorts rows by pivots and classifies
        // variables into pivots and free
        auto sort_classify(size_t lim) {
            size_t rk = 0;
            std::vector<size_t> free, pivots;
            for(size_t j = 0; j < lim; j++) {
                for(size_t i = rk + 1; i < n() && row(rk)[j] == base(0); i++) {
                    if(row(i)[j] != base(0)) {
                        std::swap(row(i), row(rk));
                        row(rk) = -row(rk);
                    }
                }
                if(rk < n() && row(rk)[j] != base(0)) {
                    pivots.push_back(j);
                    rk++;
                } else {
                    free.push_back(j);
                }
            }
            return std::array{pivots, free};
        }
    };
    template<typename base_t>
    auto operator *(base_t t, matrix<base_t> const& A) {return A * t;}
}

#line 8 "cp-algo/linalg/frobenius.hpp"
namespace cp_algo::linalg {
    enum frobenius_mode {blocks, full};
    template<frobenius_mode mode = blocks>
    auto frobenius_form(auto const& A) {
        using matrix = std::decay_t<decltype(A)>;
        using vec_t = matrix::vec_t;
        using base = typename matrix::base;
        using base = matrix::base;
        using polyn = math::poly_t<base>;
        assert(A.n() == A.m());
        size_t n = A.n();
        std::vector<polyn> charps;
        std::vector<vec_t> basis, basis_init;
        while(size(basis) < n) {
            size_t start = size(basis);
            auto generate_block = [&](auto x) {
                while(true) {
                    vec_t y = x | vec_t::ei(n + 1, size(basis));
                    for(auto &it: basis) {
                        y.reduce_by(it);
                    }
                    y.normalize();
                    if(std::ranges::count(y | std::views::take(n), base(0)) == int(n)) {
                        return polyn(typename polyn::Vector(begin(y) + n, end(y)));
                    } else {
                        basis_init.push_back(x);
                        basis.push_back(y);
                        x = A.apply(x);
                    }
                }
            };
            auto full_rec = generate_block(vec_t::random(n));
            // Extra trimming to make it block-diagonal (expensive)
            if constexpr (mode == full) {
                if(full_rec.mod_xk(start) != polyn()) {
                    auto charp = full_rec.div_xk(start);
                    auto x = basis_init[start];
                    auto shift = full_rec / charp;
                    for(int j = 0; j < shift.deg(); j++) {
                        x.add_scaled(basis_init[j], shift[j]);
                    }
                    basis.resize(start);
                    basis_init.resize(start);
                    full_rec = generate_block(x.normalize());
                }
            }
            charps.push_back(full_rec.div_xk(start));
        }
        // Find transform matrices while we're at it...
        if constexpr (mode == full) {
            for(size_t i = 0; i < n; i++) {
                for(size_t j = i + 1; j < n; j++) {
                    basis[i].reduce_by(basis[j]);
                }
                basis[i].normalize();
            }
            auto T = matrix(basis_init);
            auto Tinv = matrix(basis);
            std::ignore = Tinv.sort_classify(n);
            for(size_t i = 0; i < n; i++) {
                Tinv[i] = vec_t(
                    Tinv[i] | std::views::drop(n) | std::views::take(n)
                ) * (base(1) / Tinv[i][i]);
            }
            return std::tuple{T, Tinv, charps};
        } else {
            return charps;
        }
    }

    template<typename base>
    auto with_frobenius(matrix<base> const& A, auto &&callback) {
        auto [T, Tinv, charps] = frobenius_form<full>(A);
        std::vector<matrix<base>> blocks;
        for(auto charp: charps) {
            matrix<base> block(charp.deg());
            auto xk = callback(charp);
            for(size_t i = 0; i < block.n(); i++) {
                std::ranges::copy(xk.a, begin(block[i]));
                xk = xk.mul_xk(1) % charp;
            }
            blocks.push_back(block);
        }
        auto S = matrix<base>::block_diagonal(blocks);
        return Tinv * S * T;
    }

    template<typename base>
    auto frobenius_pow(matrix<base> const& A, uint64_t k) {
        return with_frobenius(A, [k](auto const& charp) {
            return math::poly_t<base>::xk(1).powmod(k, charp);
        });
    }
};

#line 8 "verify/linalg/characteristic.test.cpp"

using namespace std;
using namespace cp_algo::math;
using namespace cp_algo::linalg;

const int64_t mod = 998244353;
using base = modint<mod>;
using polyn = poly_t<base>;

void solve() {
    size_t n;
    cin >> n;
    matrix<base> A(n);
    A.read();
    auto blocks = frobenius_form(A);
    reduce(begin(blocks), end(blocks), polyn(1), multiplies{}).print();
}

signed main() {
    //freopen("input.txt", "r", stdin);
    ios::sync_with_stdio(0);
    cin.tie(0);
    int t = 1;
    //cin >> t;
    while(t--) {
        solve();
    }
}

Test cases

Env Name Status Elapsed Memory
g++ example_00 :heavy_check_mark: AC 5 ms 6 MB
g++ example_01 :heavy_check_mark: AC 4 ms 6 MB
g++ example_02 :heavy_check_mark: AC 5 ms 6 MB
g++ max_det_zero_random_00 :heavy_check_mark: AC 58 ms 18 MB
g++ max_det_zero_random_01 :heavy_check_mark: AC 57 ms 18 MB
g++ max_det_zero_random_02 :heavy_check_mark: AC 56 ms 18 MB
g++ max_det_zero_random_03 :heavy_check_mark: AC 55 ms 18 MB
g++ max_random_00 :heavy_check_mark: AC 54 ms 18 MB
g++ max_random_01 :heavy_check_mark: AC 53 ms 18 MB
g++ max_random_02 :heavy_check_mark: AC 55 ms 18 MB
g++ max_random_03 :heavy_check_mark: AC 56 ms 18 MB
g++ max_zero_00 :heavy_check_mark: AC 60 ms 16 MB
g++ nontrivial_frobenius_form_00 :heavy_check_mark: AC 77 ms 16 MB
g++ nontrivial_frobenius_form_01 :heavy_check_mark: AC 74 ms 17 MB
g++ nontrivial_frobenius_form_02 :heavy_check_mark: AC 68 ms 17 MB
g++ nontrivial_frobenius_form_03 :heavy_check_mark: AC 65 ms 17 MB
g++ nontrivial_frobenius_form_04 :heavy_check_mark: AC 62 ms 17 MB
g++ nontrivial_frobenius_form_05 :heavy_check_mark: AC 58 ms 18 MB
g++ nontrivial_frobenius_form_06 :heavy_check_mark: AC 59 ms 16 MB
g++ nontrivial_frobenius_form_07 :heavy_check_mark: AC 59 ms 16 MB
g++ nontrivial_frobenius_form_08 :heavy_check_mark: AC 60 ms 16 MB
g++ nontrivial_frobenius_form_09 :heavy_check_mark: AC 56 ms 16 MB
g++ small_multiple_root_00 :heavy_check_mark: AC 5 ms 6 MB
g++ small_multiple_root_01 :heavy_check_mark: AC 5 ms 6 MB
g++ small_random_00 :heavy_check_mark: AC 5 ms 6 MB
g++ small_random_01 :heavy_check_mark: AC 4 ms 6 MB
g++ small_random_02 :heavy_check_mark: AC 5 ms 6 MB
g++ small_random_03 :heavy_check_mark: AC 4 ms 6 MB
Back to top page