CP-Algorithms Library

This documentation is automatically generated by competitive-verifier/competitive-verifier

View the Project on GitHub cp-algorithms/cp-algorithms-aux

:heavy_check_mark: cp-algo/math/fft64.hpp

Depends on

Verified with

Code

#ifndef CP_ALGO_MATH_FFT64_HPP
#define CP_ALGO_MATH_FFT64_HPP
#include "../random/rng.hpp"
#include "../math/common.hpp"
#include "../math/cvector.hpp"

namespace cp_algo::math::fft {
    struct dft64 {
        std::vector<cp_algo::math::fft::cvector> cv;

        static uint64_t factor, ifactor;
        static bool _init;

        static void init() {
            if(_init) return;
            _init = true;
            factor = random::rng();
            if(factor % 2 == 0) {factor++;}
            ifactor = inv2(factor);
        }

        dft64(auto const& a, size_t n): cv(4, n) {
            init();
            uint64_t cur = 1, step = bpow(factor, n);
            for(size_t i = 0; i < std::min(std::size(a), n); i++) {
                auto split = [&](size_t i, uint64_t mul) -> std::array<int16_t, 4> {
                    uint64_t x = i < std::size(a) ? a[i] * mul : 0;
                    std::array<int16_t, 4> res;
                    for(int z = 0; z < 4; z++) {
                        res[z] = int16_t(x);
                        x = (x >> 16) + (res[z] < 0);
                    }
                    return res;
                };
                auto re = split(i, cur);
                auto im = split(n + i, cur * step);
                for(int z = 0; z < 4; z++) {
                    real(cv[z].at(i))[i % 4] = re[z];
                    imag(cv[z].at(i))[i % 4] = im[z];
                }
                cur *= factor;
            }
            checkpoint("dft64 init");
            for(auto &x: cv) {
                x.fft();
            }
        }

        void dot(dft64 const& t) {
            size_t N = cv[0].size();
            cvector::exec_on_evals<1>(N / flen, [&](size_t k, point rt) {
                k *= flen;
                auto [A0x, A0y] = cv[0].at(k);
                auto [A1x, A1y] = cv[1].at(k);
                auto [A2x, A2y] = cv[2].at(k);
                auto [A3x, A3y] = cv[3].at(k);
                std::array B = {
                    t.cv[0].at(k),
                    t.cv[1].at(k),
                    t.cv[2].at(k),
                    t.cv[3].at(k)
                };

                std::array<vpoint, 4> C = {vz, vz, vz, vz};
                for (size_t i = 0; i < flen; i++) {
                    std::array A = {
                        vpoint{vz + A0x[i], vz + A0y[i]},
                        vpoint{vz + A1x[i], vz + A1y[i]},
                        vpoint{vz + A2x[i], vz + A2y[i]},
                        vpoint{vz + A3x[i], vz + A3y[i]}
                    };
                    for(size_t k = 0; k < 4; k++) {
                        for(size_t i = 0; i <= k; i++) {
                            C[k] += A[i] * B[k - i];
                        }
                    }
                    for(size_t k = 0; k < 4; k++) {
                        real(B[k]) = rotate_right(real(B[k]));
                        imag(B[k]) = rotate_right(imag(B[k]));
                        auto bx = real(B[k])[0], by = imag(B[k])[0];
                        real(B[k])[0] = bx * real(rt) - by * imag(rt);
                        imag(B[k])[0] = bx * imag(rt) + by * real(rt);
                    }
                }
                cv[0].at(k) = C[0];
                cv[1].at(k) = C[1];
                cv[2].at(k) = C[2];
                cv[3].at(k) = C[3];
            });
            checkpoint("dot");
            for(auto &x: cv) {
                x.ifft();
            }
        }

        void recover_mod(auto &res, size_t k) {
            size_t n = cv[0].size();
            uint64_t cur = 1, step = bpow(ifactor, n);
            for(size_t i = 0; i < std::min(k, n); i++) {
                std::array re = {real(cv[0].get(i)), real(cv[1].get(i)), real(cv[2].get(i)), real(cv[3].get(i))};
                std::array im = {imag(cv[0].get(i)), imag(cv[1].get(i)), imag(cv[2].get(i)), imag(cv[3].get(i))};
                auto set_i = [&](size_t i, auto &x, auto mul) {
                    if (i >= k) return;
                    res[i] = llround(x[0]) + (llround(x[1]) << 16) + (llround(x[2]) << 32) + (llround(x[3]) << 48);
                    res[i] *= mul;
                };
                set_i(i, re, cur);
                set_i(n + i, im, cur * step);
                cur *= ifactor;
            }
            cp_algo::checkpoint("recover mod");
        }
    };
    uint64_t dft64::factor = 1, dft64::ifactor = 1;
    bool dft64::_init = false;

    void conv64(auto& a, auto const& b) {
        size_t n = a.size(), m = b.size();
        size_t N = std::max(flen, std::bit_ceil(n + m - 1) / 2);
        dft64 A(a, N), B(b, N);
        A.dot(B);
        a.resize(n + m - 1);
        A.recover_mod(a, n + m - 1);
    }
}
#endif // CP_ALGO_MATH_FFT64_HPP
#line 1 "cp-algo/math/fft64.hpp"


#line 1 "cp-algo/random/rng.hpp"


#include <chrono>
#include <random>
namespace cp_algo::random {
    uint64_t rng() {
        static std::mt19937_64 rng(
            std::chrono::steady_clock::now().time_since_epoch().count()
        );
        return rng();
    }
}

#line 1 "cp-algo/math/common.hpp"


#include <functional>
#include <cstdint>
#include <cassert>
namespace cp_algo::math {
#ifdef CP_ALGO_MAXN
    const int maxn = CP_ALGO_MAXN;
#else
    const int maxn = 1 << 19;
#endif
    const int magic = 64; // threshold for sizes to run the naive algo

    auto bpow(auto const& x, auto n, auto const& one, auto op) {
        if(n == 0) {
            return one;
        } else {
            auto t = bpow(x, n / 2, one, op);
            t = op(t, t);
            if(n % 2) {
                t = op(t, x);
            }
            return t;
        }
    }
    auto bpow(auto x, auto n, auto ans) {
        return bpow(x, n, ans, std::multiplies{});
    }
    template<typename T>
    T bpow(T const& x, auto n) {
        return bpow(x, n, T(1));
    }
    inline constexpr auto inv2(auto x) {
        assert(x % 2);
        std::make_unsigned_t<decltype(x)> y = 1;
        while(y * x != 1) {
            y *= 2 - x * y;
        }
        return y;
    }
}

#line 1 "cp-algo/math/cvector.hpp"


#line 1 "cp-algo/util/simd.hpp"


#include <experimental/simd>
#line 5 "cp-algo/util/simd.hpp"
#include <cstddef>
#include <memory>
namespace cp_algo {
    template<typename T, size_t len>
    using simd [[gnu::vector_size(len * sizeof(T))]] = T;
    using i64x4 = simd<int64_t, 4>;
    using u64x4 = simd<uint64_t, 4>;
    using u32x8 = simd<uint32_t, 8>;
    using i32x4 = simd<int32_t, 4>;
    using u32x4 = simd<uint32_t, 4>;
    using i16x4 = simd<int16_t, 4>;
    using u8x32 = simd<uint8_t, 32>;
    using dx4 = simd<double, 4>;

    [[gnu::target("avx2")]] inline dx4 abs(dx4 a) {
    return a < 0 ? -a : a;
    }

    // https://stackoverflow.com/a/77376595
    // works for ints in (-2^51, 2^51)
    static constexpr dx4 magic = dx4() + (3ULL << 51);
    [[gnu::target("avx2")]] inline i64x4 lround(dx4 x) {
        return i64x4(x + magic) - i64x4(magic);
    }
    [[gnu::target("avx2")]] inline dx4 to_double(i64x4 x) {
        return dx4(x + i64x4(magic)) - magic;
    }

    [[gnu::target("avx2")]] inline dx4 round(dx4 a) {
        return dx4{
            std::nearbyint(a[0]),
            std::nearbyint(a[1]),
            std::nearbyint(a[2]),
            std::nearbyint(a[3])
        };
    }

    [[gnu::target("avx2")]] inline u64x4 low32(u64x4 x) {
        return x & uint32_t(-1);
    }
    [[gnu::target("avx2")]] inline auto swap_bytes(auto x) {
        return decltype(x)(__builtin_shufflevector(u32x8(x), u32x8(x), 1, 0, 3, 2, 5, 4, 7, 6));
    }
    [[gnu::target("avx2")]] inline u64x4 montgomery_reduce(u64x4 x, uint32_t mod, uint32_t imod) {
        auto x_ninv = u64x4(_mm256_mul_epu32(__m256i(x), __m256i() + imod));
        x += u64x4(_mm256_mul_epu32(__m256i(x_ninv), __m256i() + mod));
        return swap_bytes(x);
    }

    [[gnu::target("avx2")]] inline u64x4 montgomery_mul(u64x4 x, u64x4 y, uint32_t mod, uint32_t imod) {
        return montgomery_reduce(u64x4(_mm256_mul_epu32(__m256i(x), __m256i(y))), mod, imod);
    }
    [[gnu::target("avx2")]] inline u32x8 montgomery_mul(u32x8 x, u32x8 y, uint32_t mod, uint32_t imod) {
        return u32x8(montgomery_mul(u64x4(x), u64x4(y), mod, imod)) |
               u32x8(swap_bytes(montgomery_mul(u64x4(swap_bytes(x)), u64x4(swap_bytes(y)), mod, imod)));
    }
    [[gnu::target("avx2")]] inline dx4 rotate_right(dx4 x) {
        static constexpr u64x4 shuffler = {3, 0, 1, 2};
        return __builtin_shuffle(x, shuffler);
    }

    template<std::size_t Align = 32>
    [[gnu::target("avx2")]] inline bool is_aligned(const auto* p) noexcept {
        return (reinterpret_cast<std::uintptr_t>(p) % Align) == 0;
    }

    template<class Target>
    [[gnu::target("avx2")]] inline Target& vector_cast(auto &&p) {
        return *reinterpret_cast<Target*>(std::assume_aligned<alignof(Target)>(&p));
    }
}

#line 1 "cp-algo/util/complex.hpp"


#include <iostream>
#include <cmath>
namespace cp_algo {
    // Custom implementation, since std::complex is UB on non-floating types
    template<typename T>
    struct complex {
        using value_type = T;
        T x, y;
        constexpr complex(): x(), y() {}
        constexpr complex(T x): x(x), y() {}
        constexpr complex(T x, T y): x(x), y(y) {}
        complex& operator *= (T t) {x *= t; y *= t; return *this;}
        complex& operator /= (T t) {x /= t; y /= t; return *this;}
        complex operator * (T t) const {return complex(*this) *= t;}
        complex operator / (T t) const {return complex(*this) /= t;}
        complex& operator += (complex t) {x += t.x; y += t.y; return *this;}
        complex& operator -= (complex t) {x -= t.x; y -= t.y; return *this;}
        complex operator * (complex t) const {return {x * t.x - y * t.y, x * t.y + y * t.x};}
        complex operator / (complex t) const {return *this * t.conj() / t.norm();}
        complex operator + (complex t) const {return complex(*this) += t;}
        complex operator - (complex t) const {return complex(*this) -= t;}
        complex& operator *= (complex t) {return *this = *this * t;}
        complex& operator /= (complex t) {return *this = *this / t;}
        complex operator - () const {return {-x, -y};}
        complex conj() const {return {x, -y};}
        T norm() const {return x * x + y * y;}
        T abs() const {return std::sqrt(norm());}
        T const real() const {return x;}
        T const imag() const {return y;}
        T& real() {return x;}
        T& imag() {return y;}
        static constexpr complex polar(T r, T theta) {return {T(r * cos(theta)), T(r * sin(theta))};}
        auto operator <=> (complex const& t) const = default;
    };
    template<typename T>
    complex<T> operator * (auto x, complex<T> y) {return y *= x;}
    template<typename T> complex<T> conj(complex<T> x) {return x.conj();}
    template<typename T> T norm(complex<T> x) {return x.norm();}
    template<typename T> T abs(complex<T> x) {return x.abs();}
    template<typename T> T& real(complex<T> &x) {return x.real();}
    template<typename T> T& imag(complex<T> &x) {return x.imag();}
    template<typename T> T const real(complex<T> const& x) {return x.real();}
    template<typename T> T const imag(complex<T> const& x) {return x.imag();}
    template<typename T>
    constexpr complex<T> polar(T r, T theta) {
        return complex<T>::polar(r, theta);
    }
    template<typename T>
    std::ostream& operator << (std::ostream &out, complex<T> x) {
        return out << x.real() << ' ' << x.imag();
    }
}

#line 1 "cp-algo/util/checkpoint.hpp"


#line 5 "cp-algo/util/checkpoint.hpp"
#include <string>
#include <map>
namespace cp_algo {
    std::map<std::string, double> checkpoints;
    template<bool final = false>
    void checkpoint([[maybe_unused]] std::string const& msg = "") {
#ifdef CP_ALGO_CHECKPOINT
        static double last = 0;
        double now = (double)clock() / CLOCKS_PER_SEC;
        double delta = now - last;
        last = now;
        if(msg.size() && !final) {
            checkpoints[msg] += delta;
        }
        if(final) {
            for(auto const& [key, value] : checkpoints) {
                std::cerr << key << ": " << value * 1000 << " ms\n";
            }
            std::cerr << "Total: " << now * 1000 << " ms\n";
        }
#endif
    }
}

#line 1 "cp-algo/util/big_alloc.hpp"



#line 6 "cp-algo/util/big_alloc.hpp"

// Single macro to detect POSIX platforms (Linux, Unix, macOS)
#if defined(__linux__) || defined(__unix__) || (defined(__APPLE__) && defined(__MACH__))
#  define CP_ALGO_USE_MMAP 1
#  include <sys/mman.h>
#else
#  define CP_ALGO_USE_MMAP 0
#endif

namespace cp_algo {
    template <typename T, std::size_t Align = 32>
    class big_alloc {
        static_assert( Align >= alignof(void*), "Align must be at least pointer-size");
        static_assert(std::popcount(Align) == 1, "Align must be a power of two");
    public:
        using value_type = T;
        template <class U> struct rebind { using other = big_alloc<U, Align>; };
        constexpr bool operator==(const big_alloc&) const = default;
        constexpr bool operator!=(const big_alloc&) const = default;

        big_alloc() noexcept = default;
        template <typename U, std::size_t A>
        big_alloc(const big_alloc<U, A>&) noexcept {}

        [[nodiscard]] T* allocate(std::size_t n) {
            std::size_t padded = round_up(n * sizeof(T));
            std::size_t align = std::max<std::size_t>(alignof(T),  Align);
#if CP_ALGO_USE_MMAP
            if (padded >= MEGABYTE) {
                void* raw = mmap(nullptr, padded,
                                PROT_READ | PROT_WRITE,
                                MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
                madvise(raw, padded, MADV_HUGEPAGE);
                madvise(raw, padded, MADV_POPULATE_WRITE);
                return static_cast<T*>(raw);
            }
#endif
            return static_cast<T*>(::operator new(padded, std::align_val_t(align)));
        }

        void deallocate(T* p, std::size_t n) noexcept {
            if (!p) return;
            std::size_t padded = round_up(n * sizeof(T));
            std::size_t align  = std::max<std::size_t>(alignof(T),  Align);
    #if CP_ALGO_USE_MMAP
            if (padded >= MEGABYTE) { munmap(p, padded); return; }
    #endif
            ::operator delete(p, padded, std::align_val_t(align));
        }

    private:
        static constexpr std::size_t MEGABYTE = 1 << 20;
        static constexpr std::size_t round_up(std::size_t x) noexcept {
            return (x + Align - 1) / Align * Align;
        }
    };
}

#line 7 "cp-algo/math/cvector.hpp"
#include <ranges>
#include <bit>

namespace stdx = std::experimental;
namespace cp_algo::math::fft {
    static constexpr size_t flen = 4;
    using ftype = double;
    using vftype = dx4;
    using point = complex<ftype>;
    using vpoint = complex<vftype>;
    static constexpr vftype vz = {};
    vpoint vi(vpoint const& r) {
        return {-imag(r), real(r)};
    }

    struct cvector {
        std::vector<vpoint, big_alloc<vpoint>> r;
        cvector(size_t n) {
            n = std::max(flen, std::bit_ceil(n));
            r.resize(n / flen);
            checkpoint("cvector create");
        }

        vpoint& at(size_t k) {return r[k / flen];}
        vpoint at(size_t k) const {return r[k / flen];}
        template<class pt = point>
        void set(size_t k, pt t) {
            if constexpr(std::is_same_v<pt, point>) {
                real(r[k / flen])[k % flen] = real(t);
                imag(r[k / flen])[k % flen] = imag(t);
            } else {
                at(k) = t;
            }
        }
        template<class pt = point>
        pt get(size_t k) const {
            if constexpr(std::is_same_v<pt, point>) {
                return {real(r[k / flen])[k % flen], imag(r[k / flen])[k % flen]};
            } else {
                return at(k);
            }
        }

        size_t size() const {
            return flen * r.size();
        }
        static constexpr size_t eval_arg(size_t n) {
            if(n < pre_evals) {
                return eval_args[n];
            } else {
                return eval_arg(n / 2) | (n & 1) << (std::bit_width(n) - 1);
            }
        }
        static constexpr point eval_point(size_t n) {
            if(n % 2) {
                return -eval_point(n - 1);
            } else if(n % 4) {
                return eval_point(n - 2) * point(0, 1);
            } else if(n / 4 < pre_evals) {
                return evalp[n / 4];
            } else {
                return polar<ftype>(1., std::numbers::pi / (ftype)std::bit_floor(n) * (ftype)eval_arg(n));
            }
        }
        static constexpr std::array<point, 32> roots = []() {
            std::array<point, 32> res;
            for(size_t i = 2; i < 32; i++) {
                res[i] = polar<ftype>(1., std::numbers::pi / (1ull << (i - 2)));
            }
            return res;
        }();
        static constexpr point root(size_t n) {
            return roots[std::bit_width(n)];
        }
        template<int step>
        static void exec_on_eval(size_t n, size_t k, auto &&callback) {
            callback(k, root(4 * step * n) * eval_point(step * k));
        }
        template<int step>
        static void exec_on_evals(size_t n, auto &&callback) {
            point factor = root(4 * step * n);
            for(size_t i = 0; i < n; i++) {
                callback(i, factor * eval_point(step * i));
            }
        }

        void dot(cvector const& t) {
            size_t n = this->size();
            exec_on_evals<1>(n / flen, [&](size_t k, point rt) {
                k *= flen;
                auto [Ax, Ay] = at(k);
                auto Bv = t.at(k);
                vpoint res = vz;
                for (size_t i = 0; i < flen; i++) {
                    res += vpoint(vz + Ax[i], vz + Ay[i]) * Bv;
                    real(Bv) = rotate_right(real(Bv));
                    imag(Bv) = rotate_right(imag(Bv));
                    auto x = real(Bv)[0], y = imag(Bv)[0];
                    real(Bv)[0] = x * real(rt) - y * imag(rt);
                    imag(Bv)[0] = x * imag(rt) + y * real(rt);
                }
                set(k, res);
            });
            checkpoint("dot");
        }
        template<bool partial = true>
        void ifft() {
            size_t n = size();
            if constexpr (!partial) {
                point pi(0, 1);
                exec_on_evals<4>(n / 4, [&](size_t k, point rt) {
                    k *= 4;
                    point v1 = conj(rt);
                    point v2 = v1 * v1;
                    point v3 = v1 * v2;
                    auto A = get(k);
                    auto B = get(k + 1);
                    auto C = get(k + 2);
                    auto D = get(k + 3);
                    set(k, (A + B) + (C + D));
                    set(k + 2, ((A + B) - (C + D)) * v2);
                    set(k + 1, ((A - B) - pi * (C - D)) * v1);
                    set(k + 3, ((A - B) + pi * (C - D)) * v3);
                });
            }
            bool parity = std::countr_zero(n) % 2;
            if(parity) {
                exec_on_evals<2>(n / (2 * flen), [&](size_t k, point rt) {
                    k *= 2 * flen;
                    vpoint cvrt = {vz + real(rt), vz - imag(rt)};
                    auto B = at(k) - at(k + flen);
                    at(k) += at(k + flen);
                    at(k + flen) = B * cvrt;
                });
            }

            for(size_t leaf = 3 * flen; leaf < n; leaf += 4 * flen) {
                size_t level = std::countr_one(leaf + 3);
                for(size_t lvl = 4 + parity; lvl <= level; lvl += 2) {
                    size_t i = (1 << lvl) / 4;
                    exec_on_eval<4>(n >> lvl, leaf >> lvl, [&](size_t k, point rt) {
                        k <<= lvl;
                        vpoint v1 = {vz + real(rt), vz - imag(rt)};
                        vpoint v2 = v1 * v1;
                        vpoint v3 = v1 * v2;
                        for(size_t j = k; j < k + i; j += flen) {
                            auto A = at(j);
                            auto B = at(j + i);
                            auto C = at(j + 2 * i);
                            auto D = at(j + 3 * i);
                            at(j) = ((A + B) + (C + D));
                            at(j + 2 * i) = ((A + B) - (C + D)) * v2;
                            at(j +     i) = ((A - B) - vi(C - D)) * v1;
                            at(j + 3 * i) = ((A - B) + vi(C - D)) * v3;
                        }
                    });
                }
            }
            checkpoint("ifft");
            for(size_t k = 0; k < n; k += flen) {
                if constexpr (partial) {
                    set(k, get<vpoint>(k) /= vz + ftype(n / flen));
                } else {
                    set(k, get<vpoint>(k) /= vz + ftype(n));
                }
            }
        }
        template<bool partial = true>
        void fft() {
            size_t n = size();
            bool parity = std::countr_zero(n) % 2;
            for(size_t leaf = 0; leaf < n; leaf += 4 * flen) {
                size_t level = std::countr_zero(n + leaf);
                level -= level % 2 != parity;
                for(size_t lvl = level; lvl >= 4; lvl -= 2) {
                    size_t i = (1 << lvl) / 4;
                    exec_on_eval<4>(n >> lvl, leaf >> lvl, [&](size_t k, point rt) {
                        k <<= lvl;
                        vpoint v1 = {vz + real(rt), vz + imag(rt)};
                        vpoint v2 = v1 * v1;
                        vpoint v3 = v1 * v2;
                        for(size_t j = k; j < k + i; j += flen) {
                            auto A = at(j);
                            auto B = at(j + i) * v1;
                            auto C = at(j + 2 * i) * v2;
                            auto D = at(j + 3 * i) * v3;
                            at(j)         = (A + C) + (B + D);
                            at(j + i)     = (A + C) - (B + D);
                            at(j + 2 * i) = (A - C) + vi(B - D);
                            at(j + 3 * i) = (A - C) - vi(B - D);
                        }
                    });
                }
            }
            if(parity) {
                exec_on_evals<2>(n / (2 * flen), [&](size_t k, point rt) {
                    k *= 2 * flen;
                    vpoint vrt = {vz + real(rt), vz + imag(rt)};
                    auto t = at(k + flen) * vrt;
                    at(k + flen) = at(k) - t;
                    at(k) += t;
                });
            }
            if constexpr (!partial) {
                point pi(0, 1);
                exec_on_evals<4>(n / 4, [&](size_t k, point rt) {
                    k *= 4;
                    point v1 = rt;
                    point v2 = v1 * v1;
                    point v3 = v1 * v2;
                        auto A = get(k);
                        auto B = get(k + 1) * v1;
                        auto C = get(k + 2) * v2;
                        auto D = get(k + 3) * v3;
                        set(k, (A + C) + (B + D));
                        set(k + 1, (A + C) - (B + D));
                        set(k + 2, (A - C) + pi * (B - D));
                        set(k + 3, (A - C) - pi * (B - D));
                });
            }
            checkpoint("fft");
        }
        static constexpr size_t pre_evals = 1 << 16;
        static const std::array<size_t, pre_evals> eval_args;
        static const std::array<point, pre_evals> evalp;
    };

    const std::array<size_t, cvector::pre_evals> cvector::eval_args = []() {
        std::array<size_t, pre_evals> res = {};
        for(size_t i = 1; i < pre_evals; i++) {
            res[i] = res[i >> 1] | (i & 1) << (std::bit_width(i) - 1);
        }
        return res;
    }();
    const std::array<point, cvector::pre_evals> cvector::evalp = []() {
        std::array<point, pre_evals> res = {};
        res[0] = 1;
        for(size_t n = 1; n < pre_evals; n++) {
            res[n] = polar<ftype>(1., std::numbers::pi * ftype(eval_args[n]) / ftype(4 * std::bit_floor(n)));
        }
        return res;
    }();
}

#line 6 "cp-algo/math/fft64.hpp"

namespace cp_algo::math::fft {
    struct dft64 {
        std::vector<cp_algo::math::fft::cvector> cv;

        static uint64_t factor, ifactor;
        static bool _init;

        static void init() {
            if(_init) return;
            _init = true;
            factor = random::rng();
            if(factor % 2 == 0) {factor++;}
            ifactor = inv2(factor);
        }

        dft64(auto const& a, size_t n): cv(4, n) {
            init();
            uint64_t cur = 1, step = bpow(factor, n);
            for(size_t i = 0; i < std::min(std::size(a), n); i++) {
                auto split = [&](size_t i, uint64_t mul) -> std::array<int16_t, 4> {
                    uint64_t x = i < std::size(a) ? a[i] * mul : 0;
                    std::array<int16_t, 4> res;
                    for(int z = 0; z < 4; z++) {
                        res[z] = int16_t(x);
                        x = (x >> 16) + (res[z] < 0);
                    }
                    return res;
                };
                auto re = split(i, cur);
                auto im = split(n + i, cur * step);
                for(int z = 0; z < 4; z++) {
                    real(cv[z].at(i))[i % 4] = re[z];
                    imag(cv[z].at(i))[i % 4] = im[z];
                }
                cur *= factor;
            }
            checkpoint("dft64 init");
            for(auto &x: cv) {
                x.fft();
            }
        }

        void dot(dft64 const& t) {
            size_t N = cv[0].size();
            cvector::exec_on_evals<1>(N / flen, [&](size_t k, point rt) {
                k *= flen;
                auto [A0x, A0y] = cv[0].at(k);
                auto [A1x, A1y] = cv[1].at(k);
                auto [A2x, A2y] = cv[2].at(k);
                auto [A3x, A3y] = cv[3].at(k);
                std::array B = {
                    t.cv[0].at(k),
                    t.cv[1].at(k),
                    t.cv[2].at(k),
                    t.cv[3].at(k)
                };

                std::array<vpoint, 4> C = {vz, vz, vz, vz};
                for (size_t i = 0; i < flen; i++) {
                    std::array A = {
                        vpoint{vz + A0x[i], vz + A0y[i]},
                        vpoint{vz + A1x[i], vz + A1y[i]},
                        vpoint{vz + A2x[i], vz + A2y[i]},
                        vpoint{vz + A3x[i], vz + A3y[i]}
                    };
                    for(size_t k = 0; k < 4; k++) {
                        for(size_t i = 0; i <= k; i++) {
                            C[k] += A[i] * B[k - i];
                        }
                    }
                    for(size_t k = 0; k < 4; k++) {
                        real(B[k]) = rotate_right(real(B[k]));
                        imag(B[k]) = rotate_right(imag(B[k]));
                        auto bx = real(B[k])[0], by = imag(B[k])[0];
                        real(B[k])[0] = bx * real(rt) - by * imag(rt);
                        imag(B[k])[0] = bx * imag(rt) + by * real(rt);
                    }
                }
                cv[0].at(k) = C[0];
                cv[1].at(k) = C[1];
                cv[2].at(k) = C[2];
                cv[3].at(k) = C[3];
            });
            checkpoint("dot");
            for(auto &x: cv) {
                x.ifft();
            }
        }

        void recover_mod(auto &res, size_t k) {
            size_t n = cv[0].size();
            uint64_t cur = 1, step = bpow(ifactor, n);
            for(size_t i = 0; i < std::min(k, n); i++) {
                std::array re = {real(cv[0].get(i)), real(cv[1].get(i)), real(cv[2].get(i)), real(cv[3].get(i))};
                std::array im = {imag(cv[0].get(i)), imag(cv[1].get(i)), imag(cv[2].get(i)), imag(cv[3].get(i))};
                auto set_i = [&](size_t i, auto &x, auto mul) {
                    if (i >= k) return;
                    res[i] = llround(x[0]) + (llround(x[1]) << 16) + (llround(x[2]) << 32) + (llround(x[3]) << 48);
                    res[i] *= mul;
                };
                set_i(i, re, cur);
                set_i(n + i, im, cur * step);
                cur *= ifactor;
            }
            cp_algo::checkpoint("recover mod");
        }
    };
    uint64_t dft64::factor = 1, dft64::ifactor = 1;
    bool dft64::_init = false;

    void conv64(auto& a, auto const& b) {
        size_t n = a.size(), m = b.size();
        size_t N = std::max(flen, std::bit_ceil(n + m - 1) / 2);
        dft64 A(a, N), B(b, N);
        A.dot(B);
        a.resize(n + m - 1);
        A.recover_mod(a, n + m - 1);
    }
}

Back to top page