This documentation is automatically generated by competitive-verifier/competitive-verifier
#include "cp-algo/number_theory/primality.hpp"#ifndef CP_ALGO_NUMBER_THEORY_PRIMALITY_HPP
#define CP_ALGO_NUMBER_THEORY_PRIMALITY_HPP
#include "modint.hpp"
#include <algorithm>
#include <bit>
namespace cp_algo::math {
// https://en.wikipedia.org/wiki/Miller–Rabin_primality_test
template<typename _Int>
bool is_prime(_Int m) {
using Int = std::make_signed_t<_Int>;
using UInt = std::make_unsigned_t<Int>;
if(m == 1 || m % 2 == 0) {
return m == 2;
}
// m - 1 = 2^s * d
int s = std::countr_zero(UInt(m - 1));
auto d = (m - 1) >> s;
using base = dynamic_modint<Int>;
auto test = [&](base x) {
x = bpow(x, d);
if(std::abs(x.rem()) <= 1) {
return true;
}
for(int i = 1; i < s && x != -1; i++) {
x *= x;
}
return x == -1;
};
return base::with_mod(m, [&]() {
#ifdef CP_ALGO_NUMBER_THEORY_PRIMALITY_BASES_HPP
uint16_t base2 = 7, base3 = 61;
if (m != uint32_t(m)) {
base2 = base_table1[uint32_t(m * 0xAD625B89) >> 18];
base3 = base_table2[base2 >> 13];
}
return test(2) && test(base2) && test(base3);
#else
return std::ranges::all_of(std::array{2, 325, 9375, 28178, 450775, 9780504, 1795265022}, test);
#endif
});
}
}
#endif // CP_ALGO_NUMBER_THEORY_PRIMALITY_HPP
#line 1 "cp-algo/number_theory/primality.hpp"
#line 1 "cp-algo/number_theory/modint.hpp"
#line 1 "cp-algo/math/common.hpp"
#include <functional>
#include <cstdint>
#include <cassert>
namespace cp_algo::math {
#ifdef CP_ALGO_MAXN
const int maxn = CP_ALGO_MAXN;
#else
const int maxn = 1 << 19;
#endif
const int magic = 64; // threshold for sizes to run the naive algo
auto bpow(auto const& x, auto n, auto const& one, auto op) {
if(n == 0) {
return one;
} else {
auto t = bpow(x, n / 2, one, op);
t = op(t, t);
if(n % 2) {
t = op(t, x);
}
return t;
}
}
auto bpow(auto x, auto n, auto ans) {
return bpow(x, n, ans, std::multiplies{});
}
template<typename T>
T bpow(T const& x, auto n) {
return bpow(x, n, T(1));
}
inline constexpr auto inv2(auto x) {
assert(x % 2);
std::make_unsigned_t<decltype(x)> y = 1;
while(y * x != 1) {
y *= 2 - x * y;
}
return y;
}
}
#line 4 "cp-algo/number_theory/modint.hpp"
#include <iostream>
#line 6 "cp-algo/number_theory/modint.hpp"
namespace cp_algo::math {
template<typename modint, typename _Int>
struct modint_base {
using Int = _Int;
using UInt = std::make_unsigned_t<Int>;
static constexpr size_t bits = sizeof(Int) * 8;
using Int2 = std::conditional_t<bits <= 32, int64_t, __int128_t>;
using UInt2 = std::conditional_t<bits <= 32, uint64_t, __uint128_t>;
constexpr static Int mod() {
return modint::mod();
}
constexpr static Int remod() {
return modint::remod();
}
constexpr static UInt2 modmod() {
return UInt2(mod()) * mod();
}
constexpr modint_base() = default;
constexpr modint_base(Int2 rr) {
to_modint().setr(UInt((rr + modmod()) % mod()));
}
modint inv() const {
return bpow(to_modint(), mod() - 2);
}
modint operator - () const {
modint neg;
neg.r = std::min(-r, remod() - r);
return neg;
}
modint& operator /= (const modint &t) {
return to_modint() *= t.inv();
}
modint& operator *= (const modint &t) {
r = UInt(UInt2(r) * t.r % mod());
return to_modint();
}
modint& operator += (const modint &t) {
r += t.r; r = std::min(r, r - remod());
return to_modint();
}
modint& operator -= (const modint &t) {
r -= t.r; r = std::min(r, r + remod());
return to_modint();
}
modint operator + (const modint &t) const {return modint(to_modint()) += t;}
modint operator - (const modint &t) const {return modint(to_modint()) -= t;}
modint operator * (const modint &t) const {return modint(to_modint()) *= t;}
modint operator / (const modint &t) const {return modint(to_modint()) /= t;}
// Why <=> doesn't work?..
auto operator == (const modint &t) const {return to_modint().getr() == t.getr();}
auto operator != (const modint &t) const {return to_modint().getr() != t.getr();}
auto operator <= (const modint &t) const {return to_modint().getr() <= t.getr();}
auto operator >= (const modint &t) const {return to_modint().getr() >= t.getr();}
auto operator < (const modint &t) const {return to_modint().getr() < t.getr();}
auto operator > (const modint &t) const {return to_modint().getr() > t.getr();}
Int rem() const {
UInt R = to_modint().getr();
return R - (R > (UInt)mod() / 2) * mod();
}
constexpr void setr(UInt rr) {
r = rr;
}
constexpr UInt getr() const {
return r;
}
// Only use these if you really know what you're doing!
static UInt modmod8() {return UInt(8 * modmod());}
void add_unsafe(UInt t) {r += t;}
void pseudonormalize() {r = std::min(r, r - modmod8());}
modint const& normalize() {
if(r >= (UInt)mod()) {
r %= mod();
}
return to_modint();
}
void setr_direct(UInt rr) {r = rr;}
UInt getr_direct() const {return r;}
protected:
UInt r;
private:
constexpr modint& to_modint() {return static_cast<modint&>(*this);}
constexpr modint const& to_modint() const {return static_cast<modint const&>(*this);}
};
template<typename modint>
concept modint_type = std::is_base_of_v<modint_base<modint, typename modint::Int>, modint>;
template<modint_type modint>
decltype(std::cin)& operator >> (decltype(std::cin) &in, modint &x) {
typename modint::UInt r;
auto &res = in >> r;
x.setr(r);
return res;
}
template<modint_type modint>
decltype(std::cout)& operator << (decltype(std::cout) &out, modint const& x) {
return out << x.getr();
}
template<auto m>
struct modint: modint_base<modint<m>, decltype(m)> {
using Base = modint_base<modint<m>, decltype(m)>;
using Base::Base;
static constexpr Base::Int mod() {return m;}
static constexpr Base::UInt remod() {return m;}
auto getr() const {return Base::r;}
};
template<typename Int = int>
struct dynamic_modint: modint_base<dynamic_modint<Int>, Int> {
using Base = modint_base<dynamic_modint<Int>, Int>;
using Base::Base;
static Base::UInt m_reduce(Base::UInt2 ab) {
if(mod() % 2 == 0) [[unlikely]] {
return typename Base::UInt(ab % mod());
} else {
typename Base::UInt2 m = typename Base::UInt(ab) * imod();
return typename Base::UInt((ab + m * mod()) >> Base::bits);
}
}
static Base::UInt m_transform(Base::UInt a) {
if(mod() % 2 == 0) [[unlikely]] {
return a;
} else {
return m_reduce(a * pw128());
}
}
dynamic_modint& operator *= (const dynamic_modint &t) {
Base::r = m_reduce(typename Base::UInt2(Base::r) * t.r);
return *this;
}
void setr(Base::UInt rr) {
Base::r = m_transform(rr);
}
Base::UInt getr() const {
typename Base::UInt res = m_reduce(Base::r);
return std::min(res, res - mod());
}
static Int mod() {return m;}
static Int remod() {return 2 * m;}
static Base::UInt imod() {return im;}
static Base::UInt2 pw128() {return r2;}
static void switch_mod(Int nm) {
m = nm;
im = m % 2 ? inv2(-m) : 0;
r2 = static_cast<Base::UInt>(static_cast<Base::UInt2>(-1) % m + 1);
}
// Wrapper for temp switching
auto static with_mod(Int tmp, auto callback) {
struct scoped {
Int prev = mod();
~scoped() {switch_mod(prev);}
} _;
switch_mod(tmp);
return callback();
}
private:
static thread_local Int m;
static thread_local Base::UInt im, r2;
};
template<typename Int>
Int thread_local dynamic_modint<Int>::m = 1;
template<typename Int>
dynamic_modint<Int>::Base::UInt thread_local dynamic_modint<Int>::im = -1;
template<typename Int>
dynamic_modint<Int>::Base::UInt thread_local dynamic_modint<Int>::r2 = 0;
}
#line 4 "cp-algo/number_theory/primality.hpp"
#include <algorithm>
#include <bit>
namespace cp_algo::math {
// https://en.wikipedia.org/wiki/Miller–Rabin_primality_test
template<typename _Int>
bool is_prime(_Int m) {
using Int = std::make_signed_t<_Int>;
using UInt = std::make_unsigned_t<Int>;
if(m == 1 || m % 2 == 0) {
return m == 2;
}
// m - 1 = 2^s * d
int s = std::countr_zero(UInt(m - 1));
auto d = (m - 1) >> s;
using base = dynamic_modint<Int>;
auto test = [&](base x) {
x = bpow(x, d);
if(std::abs(x.rem()) <= 1) {
return true;
}
for(int i = 1; i < s && x != -1; i++) {
x *= x;
}
return x == -1;
};
return base::with_mod(m, [&]() {
#ifdef CP_ALGO_NUMBER_THEORY_PRIMALITY_BASES_HPP
uint16_t base2 = 7, base3 = 61;
if (m != uint32_t(m)) {
base2 = base_table1[uint32_t(m * 0xAD625B89) >> 18];
base3 = base_table2[base2 >> 13];
}
return test(2) && test(base2) && test(base3);
#else
return std::ranges::all_of(std::array{2, 325, 9375, 28178, 450775, 9780504, 1795265022}, test);
#endif
});
}
}
#ifndef CP_ALGO_NUMBER_THEORY_PRIMALITY_HPP
#define CP_ALGO_NUMBER_THEORY_PRIMALITY_HPP
#include "modint.hpp"
#include <algorithm>
#include <bit>
namespace cp_algo::math{template<typename _Int>bool is_prime(_Int m){using Int=std::make_signed_t<_Int>;using UInt=std::make_unsigned_t<Int>;if(m==1||m%2==0){return m==2;}int s=std::countr_zero(UInt(m-1));auto d=(m-1)>>s;using base=dynamic_modint<Int>;auto test=[&](base x){x=bpow(x,d);if(std::abs(x.rem())<=1){return true;}for(int i=1;i<s&&x!=-1;i++){x*=x;}return x==-1;};return base::with_mod(m,[&](){
#ifdef CP_ALGO_NUMBER_THEORY_PRIMALITY_BASES_HPP
uint16_t base2=7,base3=61;if(m!=uint32_t(m)){base2=base_table1[uint32_t(m*0xAD625B89)>>18];base3=base_table2[base2>>13];}return test(2)&&test(base2)&&test(base3);
#else
return std::ranges::all_of(std::array{2,325,9375,28178,450775,9780504,1795265022},test);
#endif
});}}
#endif
#line 1 "cp-algo/number_theory/primality.hpp"
#line 1 "cp-algo/number_theory/modint.hpp"
#line 1 "cp-algo/math/common.hpp"
#include <functional>
#include <cstdint>
#include <cassert>
namespace cp_algo::math{
#ifdef CP_ALGO_MAXN
const int maxn=CP_ALGO_MAXN;
#else
const int maxn=1<<19;
#endif
const int magic=64;auto bpow(auto const&x,auto n,auto const&one,auto op){if(n==0){return one;}else{auto t=bpow(x,n/2,one,op);t=op(t,t);if(n%2){t=op(t,x);}return t;}}auto bpow(auto x,auto n,auto ans){return bpow(x,n,ans,std::multiplies{});}template<typename T>T bpow(T const&x,auto n){return bpow(x,n,T(1));}inline constexpr auto inv2(auto x){assert(x%2);std::make_unsigned_t<decltype(x)>y=1;while(y*x!=1){y*=2-x*y;}return y;}}
#line 4 "cp-algo/number_theory/modint.hpp"
#include <iostream>
#line 6 "cp-algo/number_theory/modint.hpp"
namespace cp_algo::math{template<typename modint,typename _Int>struct modint_base{using Int=_Int;using UInt=std::make_unsigned_t<Int>;static constexpr size_t bits=sizeof(Int)*8;using Int2=std::conditional_t<bits<=32,int64_t,__int128_t>;using UInt2=std::conditional_t<bits<=32,uint64_t,__uint128_t>;constexpr static Int mod(){return modint::mod();}constexpr static Int remod(){return modint::remod();}constexpr static UInt2 modmod(){return UInt2(mod())*mod();}constexpr modint_base()=default;constexpr modint_base(Int2 rr){to_modint().setr(UInt((rr+modmod())%mod()));}modint inv()const{return bpow(to_modint(),mod()-2);}modint operator-()const{modint neg;neg.r=std::min(-r,remod()-r);return neg;}modint&operator/=(const modint&t){return to_modint()*=t.inv();}modint&operator*=(const modint&t){r=UInt(UInt2(r)*t.r%mod());return to_modint();}modint&operator+=(const modint&t){r+=t.r;r=std::min(r,r-remod());return to_modint();}modint&operator-=(const modint&t){r-=t.r;r=std::min(r,r+remod());return to_modint();}modint operator+(const modint&t)const{return modint(to_modint())+=t;}modint operator-(const modint&t)const{return modint(to_modint())-=t;}modint operator*(const modint&t)const{return modint(to_modint())*=t;}modint operator/(const modint&t)const{return modint(to_modint())/=t;}auto operator==(const modint&t)const{return to_modint().getr()==t.getr();}auto operator!=(const modint&t)const{return to_modint().getr()!=t.getr();}auto operator<=(const modint&t)const{return to_modint().getr()<=t.getr();}auto operator>=(const modint&t)const{return to_modint().getr()>=t.getr();}auto operator<(const modint&t)const{return to_modint().getr()<t.getr();}auto operator>(const modint&t)const{return to_modint().getr()>t.getr();}Int rem()const{UInt R=to_modint().getr();return R-(R>(UInt)mod()/2)*mod();}constexpr void setr(UInt rr){r=rr;}constexpr UInt getr()const{return r;}static UInt modmod8(){return UInt(8*modmod());}void add_unsafe(UInt t){r+=t;}void pseudonormalize(){r=std::min(r,r-modmod8());}modint const&normalize(){if(r>=(UInt)mod()){r%=mod();}return to_modint();}void setr_direct(UInt rr){r=rr;}UInt getr_direct()const{return r;}protected:UInt r;private:constexpr modint&to_modint(){return static_cast<modint&>(*this);}constexpr modint const&to_modint()const{return static_cast<modint const&>(*this);}};template<typename modint>concept modint_type=std::is_base_of_v<modint_base<modint,typename modint::Int>,modint>;template<modint_type modint>decltype(std::cin)&operator>>(decltype(std::cin)&in,modint&x){typename modint::UInt r;auto&res=in>>r;x.setr(r);return res;}template<modint_type modint>decltype(std::cout)&operator<<(decltype(std::cout)&out,modint const&x){return out<<x.getr();}template<auto m>struct modint:modint_base<modint<m>,decltype(m)>{using Base=modint_base<modint<m>,decltype(m)>;using Base::Base;static constexpr Base::Int mod(){return m;}static constexpr Base::UInt remod(){return m;}auto getr()const{return Base::r;}};template<typename Int=int>struct dynamic_modint:modint_base<dynamic_modint<Int>,Int>{using Base=modint_base<dynamic_modint<Int>,Int>;using Base::Base;static Base::UInt m_reduce(Base::UInt2 ab){if(mod()%2==0)[[unlikely]]{return typename Base::UInt(ab%mod());}else{typename Base::UInt2 m=typename Base::UInt(ab)*imod();return typename Base::UInt((ab+m*mod())>>Base::bits);}}static Base::UInt m_transform(Base::UInt a){if(mod()%2==0)[[unlikely]]{return a;}else{return m_reduce(a*pw128());}}dynamic_modint&operator*=(const dynamic_modint&t){Base::r=m_reduce(typename Base::UInt2(Base::r)*t.r);return*this;}void setr(Base::UInt rr){Base::r=m_transform(rr);}Base::UInt getr()const{typename Base::UInt res=m_reduce(Base::r);return std::min(res,res-mod());}static Int mod(){return m;}static Int remod(){return 2*m;}static Base::UInt imod(){return im;}static Base::UInt2 pw128(){return r2;}static void switch_mod(Int nm){m=nm;im=m%2?inv2(-m):0;r2=static_cast<Base::UInt>(static_cast<Base::UInt2>(-1)%m+1);}auto static with_mod(Int tmp,auto callback){struct scoped{Int prev=mod();~scoped(){switch_mod(prev);}}_;switch_mod(tmp);return callback();}private:static thread_local Int m;static thread_local Base::UInt im,r2;};template<typename Int>Int thread_local dynamic_modint<Int>::m=1;template<typename Int>dynamic_modint<Int>::Base::UInt thread_local dynamic_modint<Int>::im=-1;template<typename Int>dynamic_modint<Int>::Base::UInt thread_local dynamic_modint<Int>::r2=0;}
#line 4 "cp-algo/number_theory/primality.hpp"
#include <algorithm>
#include <bit>
namespace cp_algo::math{template<typename _Int>bool is_prime(_Int m){using Int=std::make_signed_t<_Int>;using UInt=std::make_unsigned_t<Int>;if(m==1||m%2==0){return m==2;}int s=std::countr_zero(UInt(m-1));auto d=(m-1)>>s;using base=dynamic_modint<Int>;auto test=[&](base x){x=bpow(x,d);if(std::abs(x.rem())<=1){return true;}for(int i=1;i<s&&x!=-1;i++){x*=x;}return x==-1;};return base::with_mod(m,[&](){
#ifdef CP_ALGO_NUMBER_THEORY_PRIMALITY_BASES_HPP
uint16_t base2=7,base3=61;if(m!=uint32_t(m)){base2=base_table1[uint32_t(m*0xAD625B89)>>18];base3=base_table2[base2>>13];}return test(2)&&test(base2)&&test(base3);
#else
return std::ranges::all_of(std::array{2,325,9375,28178,450775,9780504,1795265022},test);
#endif
});}}