This documentation is automatically generated by competitive-verifier/competitive-verifier
// @brief Convolution on the Multiplicative Monoid of $\mathbb Z/p\mathbb{Z}$
#define PROBLEM "https://judge.yosupo.jp/problem/mul_modp_convolution"
#pragma GCC optimize("Ofast,unroll-loops")
#define CP_ALGO_CHECKPOINT
#include <bits/stdc++.h>
#include "blazingio/blazingio.min.hpp"
#include "cp-algo/number_theory/euler.hpp"
#include "cp-algo/math/fft.hpp"
using namespace std;
using base = cp_algo::math::modint<998244353>;
void solve() {
int p;
cin >> p;
auto g = cp_algo::math::primitive_root(p);
vector<int> lg(p);
int64_t cur = 1;
for(int i = 0; i < p - 1; i++) {
lg[cur] = i;
cur *= g;
cur %= p;
}
cp_algo::checkpoint("find lg");
base a0, b0, as = 0, bs = 0;
vector<base> a(p-1), b(p-1);
cin >> a0;
for(int i = 1; i <= p - 1; i++) {
cin >> a[lg[i]];
as += a[lg[i]];
}
cin >> b0;
for(int i = 1; i <= p - 1; i++) {
cin >> b[lg[i]];
bs += b[lg[i]];
}
cp_algo::checkpoint("read");
base c0 = (a0 + as) * (b0 + bs) - as * bs;
cout << c0 << " ";
cp_algo::math::fft::mul(a, b);
for(size_t i = p-1; i < size(a); i++) {
a[i - (p-1)] += a[i];
}
for(int i = 1; i <= p - 1; i++) {
cout << a[lg[i]] << " ";
}
cp_algo::checkpoint("write");
cp_algo::checkpoint<1>();
}
signed main() {
//freopen("input.txt", "r", stdin);
ios::sync_with_stdio(0);
cin.tie(0);
solve();
}
#line 1 "verify/poly/convolution_mul.test.cpp"
// @brief Convolution on the Multiplicative Monoid of $\mathbb Z/p\mathbb{Z}$
#define PROBLEM "https://judge.yosupo.jp/problem/mul_modp_convolution"
#pragma GCC optimize("Ofast,unroll-loops")
#define CP_ALGO_CHECKPOINT
#include <bits/stdc++.h>
#line 1 "blazingio/blazingio.min.hpp"
// NOLINTBEGIN
// clang-format off
// DO NOT REMOVE THIS MESSAGE. The mess that follows is a minified build of
// https://github.com/purplesyringa/blazingio. Refer to the repository for
// a human-readable version and documentation.
// Options: cbfoiedrhWLMXaIaAn
#define M$(x,...)_mm256_##x##_epi8(__VA_ARGS__)
#define $u(...)__VA_ARGS__
#if __APPLE__
#define $m(A,B)A
#else
#define $m(A,B)B
#endif
#if _WIN32
#define $w(A,B)A
#else
#define $w(A,B)B
#endif
#if __i386__|_M_IX86
#define $H(A,B)A
#else
#define $H(A,B)B
#endif
#if __aarch64__
#define $a(A,B)A
#else
#define $a(A,B)B
#endif
#define $P(x)void F(x K){
#define $T template<$c T
#define $c class
#define $C constexpr
#define $R return
#define $O operator
#define u$ uint64_t
#define $r $R*this;
#line 41 "blazingio/blazingio.min.hpp"
#include $a(<arm_neon.h>,<immintrin.h>)
#line 43 "blazingio/blazingio.min.hpp"
#include $w(<windows.h>,<sys/mman.h>)
#include<sys/stat.h>
#include $w(<io.h>,<unistd.h>)
#include $w(<ios>,<sys/resource.h>)
#if _MSC_VER
#define __builtin_add_overflow(a,b,c)_addcarry_u64(0,a,b,c)
#define $s
#else
$H(,u$ _umul128(u$ a,u$ b,u$*D){auto x=(__uint128_t)a*b;*D=u$(x>>64);$R(u$)x;})
#define $s $a(,__attribute__((target("avx2"))))
#endif
#define $z $a(16,32)
#define $t $a(uint8x16_t,__m256i)
#define $I $w(__forceinline,__attribute__((always_inline)))
#define $F M(),
#define E$(x)if(!(x))abort();
$w(LONG WINAPI $x(_EXCEPTION_POINTERS*);,)namespace $f{using namespace std;struct B{enum $c A:char{}c;B&$O=(char x){c=A{x};$r}$O char(){$R(char)c;}};$C u$ C=~0ULL/255;struct D{string&K;};static B E[65568];template<int F>struct G{B*H,*S;void K(off_t C){$w(char*D=(char*)VirtualAlloc(0,(C+8191)&-4096,8192,1);E$(D)E$(VirtualFree(D,0,32768))DWORD A=C&-65536;E$(!A||MapViewOfFileEx(CreateFileMapping(GetStdHandle(-10),0,2,0,A,0),4,0,0,0,D)==D)E$(VirtualAlloc(D+A,65536,12288,4)==D+A)E$(~_lseek(0,A,0))DWORD E=0;ReadFile(GetStdHandle(-10),D+A,65536,&E,0);,int A=getpagesize();char*D=(char*)mmap(0,C+A,3,2,0,0);E$(D!=(void*)-1)E$(mmap(D+((C+A-1)&-A),A,3,$m(4114,50),-1,0)!=(void*)-1))H=(B*)D+C;*H=10;H[1]=48;H[2]=0;S=(B*)D;}void L(){H=S=E;}$I void M(){if(F&&S==H){$w(DWORD A=0;ReadFile(GetStdHandle(-10),S=E,65536,&A,0);,$a($u(register long A asm("x0")=0,D asm("x1")=(long)E,G asm("x2")=65536,C asm($m("x16","x8"))=$m(3,63);asm volatile("svc 0" $m("x80",):"+r"(A),"+r"(D):"r"(C),"r"(G));S=launder(E);),off_t A=$H(3,$m(33554435,0));B*D=E;asm volatile($H("int $128","syscall"):"+a"(A),$H("+c"(D):"b","+S"(D):"D")(0),"d"(65536)$H(,$u(:"rcx","r11")));S=D;))H=S+A;*H=10;if(!A)E[1]=48,E[2]=0;}}$T>$I void N(T&x){while($F(*S&240)==48)x=T(x*10+(*S++-48));}$T>$I decltype((void)~T{1})O(T&x){M();int A=is_signed_v<T>&&*S==45;S+=A;N(x=0);x=A?1+~x:x;}$T>$I decltype((void)T{1.})O(T&x){M();int A=*S==45;S+=A;$F S+=*S==43;u$ n=0;int i=0;for(;i<18&&($F*S&240)==48;i++)n=n*10+*S++-48;int B=20;int C=*S==46;S+=C;for(;i<18&&($F*S&240)==48;i++)n=n*10+*S++-48,B-=C;x=(T)n;while(($F*S&240)==48)x=x*10+*S++-48,B-=C;if(*S==46)S++,C=1;while(($F*S&240)==48)x=x*10+*S++-48,B-=C;int D;if((*S|32)==101)S++,$F S+=*S==43,O(D),B+=D;static $C auto E=[](){array<T,41>E{};T x=1;for(int i=21;i--;)E[40-i]=x,E[i]=1/x,x*=10;$R E;}();while(B>40)x*=(T)1e10,B-=10;while(B<0)x*=(T)1e-10,B+=10;x*=E[B];x=A?-x:x;}$I void O(bool&x){$F x=*S++==49;}$I void O(char&x){$F x=*S++;}$I void O(uint8_t&x){$F x=*S++;}$I void O(int8_t&x){$F x=*S++;}$T>$s void P(string&K,T C){M();B*G=S;C();K.assign((char*)G,S-G);while(F&&S==H&&($F H!=E)){C();K.append(E,S);}}$s void O(string&K){P(K,[&]()$s{B*p=S;$w(ULONG R;,)$t x;$a(uint64x2_t A;while(memcpy(&x,p,16),A=uint64x2_t(x<33),!(A[0]|A[1]))p+=16;S=p+(A[0]?0:8)+$w((_BitScanForward64(&R,A[0]?A[0]:A[1]),R),__builtin_ctzll(A[0]?A[0]:A[1]))/8;,int J;$t C=M$(set1,32);while(memcpy(&x,p,32),!(J=M$(movemask,M$(cmpeq,C,_mm256_max_epu8(C,x)))))p+=32;S=p+$w((_BitScanForward(&R,J),R),__builtin_ctz(J));)});}$s void O(D&A){P(A.K,[&](){S=(B*)memchr(S,10,H-S+1);});if(A.K.size()&&A.K.back()==13)A.K.pop_back();if(A.K.empty()||S<H)S+=*S==10;}$T>$I void O(complex<T>&K){T A,B{};if($F*S==40){S++;O(A);if($F*S++==44)Q(B),S++;}else O(A);K={A,B};}template<size_t N>$s void O(bitset<N>&K){if(N>4095&&!*this)$R;ptrdiff_t i=N;while(i)if($F i%$z||H-S<$z)K[--i]=*S++==49;else{B*p=S;for(int64_t j=0;j<min(i,H-S)/$z;j++){i-=$z;$t x;memcpy(&x,p,$z);$a(auto B=(uint8x16_t)vdupq_n_u64(~2ULL/254)&(48-x);auto C=vzip_u8(vget_high_u8(B),vget_low_u8(B));auto y=vaddvq_u16((uint16x8_t)vcombine_u8(C.val[0],C.val[1]));,u$ a=~0ULL/65025;auto y=$w(_byteswap_ulong,__builtin_bswap32)(M$(movemask,M$(shuffle,_mm256_slli_epi32(x,7),_mm256_set_epi64x(a+C*24,a+C*16,a+C*8,a))));)p+=$z;memcpy((char*)&K+i/8,&y,$z/8);}S=p;}}$T>$I void Q(T&K){if(!is_same_v<T,D>)while($F(uint8_t)*S<33)S++;O(K);}$O bool(){$R!!*this;}bool $O!(){$R S>H;}};struct U{G<0>A;G<1>B;U(){struct stat D;E$(~fstat(0,&D))(D.st_mode>>12)==8?A.K(D.st_size):B.L();}U*tie(nullptr_t){$R this;}void sync_with_stdio(bool){}$T>$I U&$O>>(T&K){A.S?A.Q(K):B.Q(K);$r}$O bool(){$R!!*this;}bool $O!(){$R A.S?!A:!B;}};short A[100];char L[64]{1};struct
V{char*D;B*S;int J;V(){$w(E$(D=(char*)VirtualAlloc(0,536870912,8192,4))E$(VirtualAlloc(D,4096,4096,260))AddVectoredExceptionHandler(1,$x);,size_t C=536870912;$m(,rlimit E;getrlimit(RLIMIT_AS,&E);if(~E.rlim_cur)C=25165824;)D=(char*)mmap(0,C,3,$m(4162,16418),-1,0);E$(D!=(void*)-1))S=(B*)D;for(int i=0;i<100;i++)A[i]=short((48+i/10)|((48+i%10)<<8));for(int i=1;i<64;i++)L[i]=L[i-1]+(0x8922489224892249>>i&1);}~V(){flush($w(!J,));}void flush($w(int F=0,)){$w(J=1;auto E=GetStdHandle(-11);auto C=F?ReOpenFile(E,1073741824,7,2684354560):(void*)-1;DWORD A;E$(C==(void*)-1?WriteFile(E,D,DWORD((char*)S-D),&A,0):(WriteFile(C,D,DWORD(((char*)S-D+4095)&-4096),&A,0)&&~_chsize(1,int((char*)S-D)))),auto G=D;ssize_t A;while((A=write(1,G,(char*)S-G))>0)G+=A;E$(~A))S=(B*)D;}$P(char)*S++=K;}$P(uint8_t)*S++=K;}$P(int8_t)*S++=K;}$P(bool)*S++=48+K;}$T>decltype((void)~T{1})F(T K){using D=make_unsigned_t<T>;D C=K;if(K<0)F('-'),C=1+~C;static $C auto N=[](){array<D,5*sizeof(T)/2>N{};D n=1;for(size_t i=1;i<N.size();i++)n*=10,N[i]=n;$R N;}();$w(ULONG M;,)int G=L[$w(($H(_BitScanReverse(&M,ULONG((int64_t)C>>32))?M+=32:_BitScanReverse(&M,(ULONG)C|1),_BitScanReverse64(&M,C|1)),M),63^__builtin_clzll(C|1))];G-=C<N[G-1];short H[20];if $C(sizeof(T)==2){auto n=33555U*C-C/2;u$ H=A[n>>25];n=(n&33554431)*25;H|=A[n>>23]<<16;H|=u$(48+((n&8388607)*5>>22))<<32;H>>=40-G*8;memcpy(S,&H,8);}else if $C(sizeof(T)==4){auto n=1441151881ULL*C;$H(n>>=25;n++;for(int i=0;i<5;i++){H[i]=A[n>>32];n=(n&~0U)*100;},int K=57;auto J=~0ULL>>7;for(int i=0;i<5;i++){H[i]=A[n>>K];n=(n&J)*25;K-=2;J/=4;})memcpy(S,(B*)H+10-G,16);}else{$H($u(if(C<(1ULL<<32)){$R F((uint32_t)C);}auto J=(u$)1e10;auto x=C/J,y=C%J;int K=100000,b[]{int(x/K),int(x%K),int(y/K),int(y%K)};B H[40];for(int i=0;i<4;i++){int n=int((429497ULL*b[i]>>7)+1);B*p=H+i*5;*p=48+char(n>>25);n=(n&~0U>>7)*25;memcpy(p+1,A+(n>>23),2);memcpy(p+3,A+((n&~0U>>9)*25>>21),2);}),$u(u$ D,E=_umul128(18,C,&D),F;_umul128(0x725dd1d243aba0e8,C,&F);D+=__builtin_add_overflow(E,F+1,&E);for(int i=0;i<10;i++)H[i]=A[D],E=_umul128(100,E,&D);))memcpy(S,(B*)H+20-G,20);}S+=G;}$T>decltype((void)T{1.})F(T K){if(K<0)F('-'),K=-K;auto G=[&](){auto x=u$(K*1e12);$H($u(x-=x>999999999999;uint32_t n[]{uint32_t(x/1000000*429497>>7)+1,uint32_t(x%1000000*429497>>7)+1};int K=25,J=~0U>>7;for(int i=0;i<3;i++){for(int j=0;j<2;j++)memcpy(S+i*2+j*6,A+(n[j]>>K),2),n[j]=(n[j]&J)*25;K-=2;J/=4;}S+=12;),$u(u$ D,E=_umul128(472236648287,x,&D)>>8;E|=D<<56;D>>=8;E++;for(int i=0;i<6;i++)memcpy(S,A+D,2),S+=2,E=_umul128(100,E,&D);))};if(K==0)$R F('0');if(K>=1e16){K*=(T)1e-16;int B=16;while(K>=1)K*=(T).1,B++;F("0.");G();F('e');F(B);}else if(K>=1){auto B=(u$)K;F(B);if((K-=(T)B)>0)F('.'),G();}else F("0."),G();}$P(const char*)$w(size_t A=strlen(K);memcpy((char*)S,K,A);S+=A;,S=(B*)stpcpy((char*)S,K);)}$P(const uint8_t*)F((char*)K);}$P(const int8_t*)F((char*)K);}$P(string_view)memcpy(S,K.data(),K.size());S+=K.size();}$T>$P(complex<T>)*this<<'('<<K.real()<<','<<K.imag()<<')';}template<size_t N>$s $P(const bitset<N>&)auto i=N;while(i%$z)*S++=48+K[--i];B*p=S;while(i){i-=$z;$a(short,int)x;memcpy(&x,(char*)&K+i/8,$z/8);$a(auto A=(uint8x8_t)vdup_n_u16(x);vst1q_u8((uint8_t*)p,48-vtstq_u8(vcombine_u8(vuzp2_u8(A,A),vuzp1_u8(A,A)),(uint8x16_t)vdupq_n_u64(~2ULL/254)));,auto b=_mm256_set1_epi64x(~2ULL/254);_mm256_storeu_si256(($t*)p,M$(sub,M$(set1,48),M$(cmpeq,_mm256_and_si256(M$(shuffle,_mm256_set1_epi32(x),_mm256_set_epi64x(0,C,C*2,C*3)),b),b)));)p+=$z;}S=p;}$T>V&$O<<(const T&K){F(K);$r}V&$O<<(V&(*A)(V&)){$R A(*this);}};struct W{$T>W&$O<<(const T&K){$r}W&$O<<(W&(*A)(W&)){$R A(*this);}};}namespace std{$f::U i$;$f::V o$;$f::W e$;$f::U&getline($f::U&B,string&K){$f::D A{K};$R B>>A;}$f::V&flush($f::V&B){if(!i$.A.S)B.flush();$R B;}$f::V&endl($f::V&B){$R B<<'\n'<<flush;}$f::W&endl($f::W&B){$R B;}$f::W&flush($f::W&B){$R B;}}$w(LONG WINAPI $x(_EXCEPTION_POINTERS*A){auto C=A->ExceptionRecord;auto B=C->ExceptionInformation[1];if(C->ExceptionCode==2147483649&&B-(ULONG_PTR)std::o$.D<0x40000000){E$(VirtualAlloc((char*)B,16777216,4096,4)&&VirtualAlloc((char*)(B+16777216),4096,4096,260))$R-1;}$R 0;},)
#define freopen(...)if(freopen(__VA_ARGS__)==stdin)std::i$=$f::U{}
#define cin i$
#define cout o$
#ifdef ONLINE_JUDGE
#define cerr e$
#define clog e$
#endif
// End of blazingio
// NOLINTEND
// clang-format on
#line 1 "cp-algo/number_theory/euler.hpp"
#line 1 "cp-algo/number_theory/factorize.hpp"
#line 1 "cp-algo/number_theory/primality.hpp"
#line 1 "cp-algo/number_theory/modint.hpp"
#line 1 "cp-algo/math/common.hpp"
#line 6 "cp-algo/math/common.hpp"
namespace cp_algo::math {
#ifdef CP_ALGO_MAXN
const int maxn = CP_ALGO_MAXN;
#else
const int maxn = 1 << 19;
#endif
const int magic = 64; // threshold for sizes to run the naive algo
auto bpow(auto const& x, auto n, auto const& one, auto op) {
if(n == 0) {
return one;
} else {
auto t = bpow(x, n / 2, one, op);
t = op(t, t);
if(n % 2) {
t = op(t, x);
}
return t;
}
}
auto bpow(auto x, auto n, auto ans) {
return bpow(x, n, ans, std::multiplies{});
}
template<typename T>
T bpow(T const& x, auto n) {
return bpow(x, n, T(1));
}
inline constexpr auto inv2(auto x) {
assert(x % 2);
std::make_unsigned_t<decltype(x)> y = 1;
while(y * x != 1) {
y *= 2 - x * y;
}
return y;
}
}
#line 6 "cp-algo/number_theory/modint.hpp"
namespace cp_algo::math {
template<typename modint, typename _Int>
struct modint_base {
using Int = _Int;
using UInt = std::make_unsigned_t<Int>;
static constexpr size_t bits = sizeof(Int) * 8;
using Int2 = std::conditional_t<bits <= 32, int64_t, __int128_t>;
using UInt2 = std::conditional_t<bits <= 32, uint64_t, __uint128_t>;
constexpr static Int mod() {
return modint::mod();
}
constexpr static Int remod() {
return modint::remod();
}
constexpr static UInt2 modmod() {
return UInt2(mod()) * mod();
}
constexpr modint_base() = default;
constexpr modint_base(Int2 rr) {
to_modint().setr(UInt((rr + modmod()) % mod()));
}
modint inv() const {
return bpow(to_modint(), mod() - 2);
}
modint operator - () const {
modint neg;
neg.r = std::min(-r, remod() - r);
return neg;
}
modint& operator /= (const modint &t) {
return to_modint() *= t.inv();
}
modint& operator *= (const modint &t) {
r = UInt(UInt2(r) * t.r % mod());
return to_modint();
}
modint& operator += (const modint &t) {
r += t.r; r = std::min(r, r - remod());
return to_modint();
}
modint& operator -= (const modint &t) {
r -= t.r; r = std::min(r, r + remod());
return to_modint();
}
modint operator + (const modint &t) const {return modint(to_modint()) += t;}
modint operator - (const modint &t) const {return modint(to_modint()) -= t;}
modint operator * (const modint &t) const {return modint(to_modint()) *= t;}
modint operator / (const modint &t) const {return modint(to_modint()) /= t;}
// Why <=> doesn't work?..
auto operator == (const modint &t) const {return to_modint().getr() == t.getr();}
auto operator != (const modint &t) const {return to_modint().getr() != t.getr();}
auto operator <= (const modint &t) const {return to_modint().getr() <= t.getr();}
auto operator >= (const modint &t) const {return to_modint().getr() >= t.getr();}
auto operator < (const modint &t) const {return to_modint().getr() < t.getr();}
auto operator > (const modint &t) const {return to_modint().getr() > t.getr();}
Int rem() const {
UInt R = to_modint().getr();
return R - (R > (UInt)mod() / 2) * mod();
}
constexpr void setr(UInt rr) {
r = rr;
}
constexpr UInt getr() const {
return r;
}
// Only use these if you really know what you're doing!
static UInt modmod8() {return UInt(8 * modmod());}
void add_unsafe(UInt t) {r += t;}
void pseudonormalize() {r = std::min(r, r - modmod8());}
modint const& normalize() {
if(r >= (UInt)mod()) {
r %= mod();
}
return to_modint();
}
void setr_direct(UInt rr) {r = rr;}
UInt getr_direct() const {return r;}
protected:
UInt r;
private:
constexpr modint& to_modint() {return static_cast<modint&>(*this);}
constexpr modint const& to_modint() const {return static_cast<modint const&>(*this);}
};
template<typename modint>
concept modint_type = std::is_base_of_v<modint_base<modint, typename modint::Int>, modint>;
template<modint_type modint>
decltype(std::cin)& operator >> (decltype(std::cin) &in, modint &x) {
typename modint::UInt r;
auto &res = in >> r;
x.setr(r);
return res;
}
template<modint_type modint>
decltype(std::cout)& operator << (decltype(std::cout) &out, modint const& x) {
return out << x.getr();
}
template<auto m>
struct modint: modint_base<modint<m>, decltype(m)> {
using Base = modint_base<modint<m>, decltype(m)>;
using Base::Base;
static constexpr Base::Int mod() {return m;}
static constexpr Base::UInt remod() {return m;}
auto getr() const {return Base::r;}
};
template<typename Int = int>
struct dynamic_modint: modint_base<dynamic_modint<Int>, Int> {
using Base = modint_base<dynamic_modint<Int>, Int>;
using Base::Base;
static Base::UInt m_reduce(Base::UInt2 ab) {
if(mod() % 2 == 0) [[unlikely]] {
return typename Base::UInt(ab % mod());
} else {
typename Base::UInt2 m = typename Base::UInt(ab) * imod();
return typename Base::UInt((ab + m * mod()) >> Base::bits);
}
}
static Base::UInt m_transform(Base::UInt a) {
if(mod() % 2 == 0) [[unlikely]] {
return a;
} else {
return m_reduce(a * pw128());
}
}
dynamic_modint& operator *= (const dynamic_modint &t) {
Base::r = m_reduce(typename Base::UInt2(Base::r) * t.r);
return *this;
}
void setr(Base::UInt rr) {
Base::r = m_transform(rr);
}
Base::UInt getr() const {
typename Base::UInt res = m_reduce(Base::r);
return std::min(res, res - mod());
}
static Int mod() {return m;}
static Int remod() {return 2 * m;}
static Base::UInt imod() {return im;}
static Base::UInt2 pw128() {return r2;}
static void switch_mod(Int nm) {
m = nm;
im = m % 2 ? inv2(-m) : 0;
r2 = static_cast<Base::UInt>(static_cast<Base::UInt2>(-1) % m + 1);
}
// Wrapper for temp switching
auto static with_mod(Int tmp, auto callback) {
struct scoped {
Int prev = mod();
~scoped() {switch_mod(prev);}
} _;
switch_mod(tmp);
return callback();
}
private:
static thread_local Int m;
static thread_local Base::UInt im, r2;
};
template<typename Int>
Int thread_local dynamic_modint<Int>::m = 1;
template<typename Int>
dynamic_modint<Int>::Base::UInt thread_local dynamic_modint<Int>::im = -1;
template<typename Int>
dynamic_modint<Int>::Base::UInt thread_local dynamic_modint<Int>::r2 = 0;
}
#line 5 "cp-algo/number_theory/primality.hpp"
#include <bit>
namespace cp_algo::math {
// https://en.wikipedia.org/wiki/Miller–Rabin_primality_test
template<typename _Int>
bool is_prime(_Int m) {
using Int = std::make_signed_t<_Int>;
using UInt = std::make_unsigned_t<Int>;
if(m == 1 || m % 2 == 0) {
return m == 2;
}
// m - 1 = 2^s * d
int s = std::countr_zero(UInt(m - 1));
auto d = (m - 1) >> s;
using base = dynamic_modint<Int>;
auto test = [&](base x) {
x = bpow(x, d);
if(std::abs(x.rem()) <= 1) {
return true;
}
for(int i = 1; i < s && x != -1; i++) {
x *= x;
}
return x == -1;
};
return base::with_mod(m, [&](){
// Works for all m < 2^64: https://miller-rabin.appspot.com
return std::ranges::all_of(std::array{
2, 325, 9375, 28178, 450775, 9780504, 1795265022
}, test);
});
}
}
#line 1 "cp-algo/random/rng.hpp"
#line 5 "cp-algo/random/rng.hpp"
namespace cp_algo::random {
uint64_t rng() {
static std::mt19937_64 rng(
std::chrono::steady_clock::now().time_since_epoch().count()
);
return rng();
}
}
#line 5 "cp-algo/number_theory/factorize.hpp"
#include <generator>
namespace cp_algo::math {
// https://en.wikipedia.org/wiki/Pollard%27s_rho_algorithm
template<typename _Int>
auto proper_divisor(_Int m) {
using Int = std::make_signed_t<_Int>;
using base = dynamic_modint<Int>;
return m % 2 == 0 ? 2 : base::with_mod(m, [&]() {
base t = random::rng();
auto f = [&](auto x) {
return x * x + t;
};
base x = 0, y = 0;
base g = 1;
while(g == 1) {
for(int i = 0; i < 64; i++) {
x = f(x);
y = f(f(y));
if(x == y) [[unlikely]] {
t = random::rng();
x = y = 0;
} else {
base t = g * (x - y);
g = t == 0 ? g : t;
}
}
g = std::gcd(g.getr(), m);
}
return g.getr();
});
}
template<typename Int>
std::generator<Int> factorize(Int m) {
if(is_prime(m)) {
co_yield m;
} else if(m > 1) {
auto g = proper_divisor(m);
co_yield std::ranges::elements_of(factorize(g));
co_yield std::ranges::elements_of(factorize(m / g));
}
}
}
#line 4 "cp-algo/number_theory/euler.hpp"
namespace cp_algo::math {
auto euler_phi(auto m) {
auto primes = to<std::vector>(factorize(m));
std::ranges::sort(primes);
auto [from, to] = std::ranges::unique(primes);
primes.erase(from, to);
auto ans = m;
for(auto it: primes) {
ans -= ans / it;
}
return ans;
}
template<modint_type base>
auto period(base x) {
auto ans = euler_phi(base::mod());
base x0 = bpow(x, ans);
for(auto t: factorize(ans)) {
while(ans % t == 0 && x0 * bpow(x, ans / t) == x0) {
ans /= t;
}
}
return ans;
}
template<typename _Int>
_Int primitive_root(_Int p) {
using Int = std::make_signed_t<_Int>;
using base = dynamic_modint<Int>;
return base::with_mod(p, [p](){
base t = 1;
while(period(t) != p - 1) {
t = random::rng();
}
return t.getr();
});
}
}
#line 1 "cp-algo/math/fft.hpp"
#line 1 "cp-algo/util/checkpoint.hpp"
#line 7 "cp-algo/util/checkpoint.hpp"
namespace cp_algo {
std::map<std::string, double> checkpoints;
template<bool final = false>
void checkpoint([[maybe_unused]] std::string const& msg = "") {
#ifdef CP_ALGO_CHECKPOINT
static double last = 0;
double now = (double)clock() / CLOCKS_PER_SEC;
double delta = now - last;
last = now;
if(msg.size() && !final) {
checkpoints[msg] += delta;
}
if(final) {
for(auto const& [key, value] : checkpoints) {
std::cerr << key << ": " << value * 1000 << " ms\n";
}
std::cerr << "Total: " << now * 1000 << " ms\n";
}
#endif
}
}
#line 1 "cp-algo/math/cvector.hpp"
#line 1 "cp-algo/util/simd.hpp"
#include <experimental/simd>
#line 7 "cp-algo/util/simd.hpp"
namespace cp_algo {
template<typename T, size_t len>
using simd [[gnu::vector_size(len * sizeof(T))]] = T;
using i64x4 = simd<int64_t, 4>;
using u64x4 = simd<uint64_t, 4>;
using u32x8 = simd<uint32_t, 8>;
using i32x4 = simd<int32_t, 4>;
using u32x4 = simd<uint32_t, 4>;
using i16x4 = simd<int16_t, 4>;
using u8x32 = simd<uint8_t, 32>;
using dx4 = simd<double, 4>;
[[gnu::target("avx2")]] inline dx4 abs(dx4 a) {
return a < 0 ? -a : a;
}
// https://stackoverflow.com/a/77376595
// works for ints in (-2^51, 2^51)
static constexpr dx4 magic = dx4() + (3ULL << 51);
[[gnu::target("avx2")]] inline i64x4 lround(dx4 x) {
return i64x4(x + magic) - i64x4(magic);
}
[[gnu::target("avx2")]] inline dx4 to_double(i64x4 x) {
return dx4(x + i64x4(magic)) - magic;
}
[[gnu::target("avx2")]] inline dx4 round(dx4 a) {
return dx4{
std::nearbyint(a[0]),
std::nearbyint(a[1]),
std::nearbyint(a[2]),
std::nearbyint(a[3])
};
}
[[gnu::target("avx2")]] inline u64x4 low32(u64x4 x) {
return x & uint32_t(-1);
}
[[gnu::target("avx2")]] inline auto swap_bytes(auto x) {
return decltype(x)(__builtin_shufflevector(u32x8(x), u32x8(x), 1, 0, 3, 2, 5, 4, 7, 6));
}
[[gnu::target("avx2")]] inline u64x4 montgomery_reduce(u64x4 x, uint32_t mod, uint32_t imod) {
auto x_ninv = u64x4(_mm256_mul_epu32(__m256i(x), __m256i() + imod));
x += u64x4(_mm256_mul_epu32(__m256i(x_ninv), __m256i() + mod));
return swap_bytes(x);
}
[[gnu::target("avx2")]] inline u64x4 montgomery_mul(u64x4 x, u64x4 y, uint32_t mod, uint32_t imod) {
return montgomery_reduce(u64x4(_mm256_mul_epu32(__m256i(x), __m256i(y))), mod, imod);
}
[[gnu::target("avx2")]] inline u32x8 montgomery_mul(u32x8 x, u32x8 y, uint32_t mod, uint32_t imod) {
return u32x8(montgomery_mul(u64x4(x), u64x4(y), mod, imod)) |
u32x8(swap_bytes(montgomery_mul(u64x4(swap_bytes(x)), u64x4(swap_bytes(y)), mod, imod)));
}
[[gnu::target("avx2")]] inline dx4 rotate_right(dx4 x) {
static constexpr u64x4 shuffler = {3, 0, 1, 2};
return __builtin_shuffle(x, shuffler);
}
template<std::size_t Align = 32>
[[gnu::target("avx2")]] inline bool is_aligned(const auto* p) noexcept {
return (reinterpret_cast<std::uintptr_t>(p) % Align) == 0;
}
template<class Target>
[[gnu::target("avx2")]] inline Target& vector_cast(auto &&p) {
return *reinterpret_cast<Target*>(std::assume_aligned<alignof(Target)>(&p));
}
}
#line 1 "cp-algo/util/complex.hpp"
#line 5 "cp-algo/util/complex.hpp"
namespace cp_algo {
// Custom implementation, since std::complex is UB on non-floating types
template<typename T>
struct complex {
using value_type = T;
T x, y;
constexpr complex(): x(), y() {}
constexpr complex(T x): x(x), y() {}
constexpr complex(T x, T y): x(x), y(y) {}
complex& operator *= (T t) {x *= t; y *= t; return *this;}
complex& operator /= (T t) {x /= t; y /= t; return *this;}
complex operator * (T t) const {return complex(*this) *= t;}
complex operator / (T t) const {return complex(*this) /= t;}
complex& operator += (complex t) {x += t.x; y += t.y; return *this;}
complex& operator -= (complex t) {x -= t.x; y -= t.y; return *this;}
complex operator * (complex t) const {return {x * t.x - y * t.y, x * t.y + y * t.x};}
complex operator / (complex t) const {return *this * t.conj() / t.norm();}
complex operator + (complex t) const {return complex(*this) += t;}
complex operator - (complex t) const {return complex(*this) -= t;}
complex& operator *= (complex t) {return *this = *this * t;}
complex& operator /= (complex t) {return *this = *this / t;}
complex operator - () const {return {-x, -y};}
complex conj() const {return {x, -y};}
T norm() const {return x * x + y * y;}
T abs() const {return std::sqrt(norm());}
T const real() const {return x;}
T const imag() const {return y;}
T& real() {return x;}
T& imag() {return y;}
static constexpr complex polar(T r, T theta) {return {T(r * cos(theta)), T(r * sin(theta))};}
auto operator <=> (complex const& t) const = default;
};
template<typename T>
complex<T> operator * (auto x, complex<T> y) {return y *= x;}
template<typename T> complex<T> conj(complex<T> x) {return x.conj();}
template<typename T> T norm(complex<T> x) {return x.norm();}
template<typename T> T abs(complex<T> x) {return x.abs();}
template<typename T> T& real(complex<T> &x) {return x.real();}
template<typename T> T& imag(complex<T> &x) {return x.imag();}
template<typename T> T const real(complex<T> const& x) {return x.real();}
template<typename T> T const imag(complex<T> const& x) {return x.imag();}
template<typename T>
constexpr complex<T> polar(T r, T theta) {
return complex<T>::polar(r, theta);
}
template<typename T>
std::ostream& operator << (std::ostream &out, complex<T> x) {
return out << x.real() << ' ' << x.imag();
}
}
#line 1 "cp-algo/util/big_alloc.hpp"
#line 6 "cp-algo/util/big_alloc.hpp"
// Single macro to detect POSIX platforms (Linux, Unix, macOS)
#if defined(__linux__) || defined(__unix__) || (defined(__APPLE__) && defined(__MACH__))
# define CP_ALGO_USE_MMAP 1
# include <sys/mman.h>
#else
# define CP_ALGO_USE_MMAP 0
#endif
namespace cp_algo {
template <typename T, std::size_t Align = 32>
class big_alloc {
static_assert( Align >= alignof(void*), "Align must be at least pointer-size");
static_assert(std::popcount(Align) == 1, "Align must be a power of two");
public:
using value_type = T;
template <class U> struct rebind { using other = big_alloc<U, Align>; };
constexpr bool operator==(const big_alloc&) const = default;
constexpr bool operator!=(const big_alloc&) const = default;
big_alloc() noexcept = default;
template <typename U, std::size_t A>
big_alloc(const big_alloc<U, A>&) noexcept {}
[[nodiscard]] T* allocate(std::size_t n) {
std::size_t padded = round_up(n * sizeof(T));
std::size_t align = std::max<std::size_t>(alignof(T), Align);
#if CP_ALGO_USE_MMAP
if (padded >= MEGABYTE) {
void* raw = mmap(nullptr, padded,
PROT_READ | PROT_WRITE,
MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
madvise(raw, padded, MADV_HUGEPAGE);
madvise(raw, padded, MADV_POPULATE_WRITE);
return static_cast<T*>(raw);
}
#endif
return static_cast<T*>(::operator new(padded, std::align_val_t(align)));
}
void deallocate(T* p, std::size_t n) noexcept {
if (!p) return;
std::size_t padded = round_up(n * sizeof(T));
std::size_t align = std::max<std::size_t>(alignof(T), Align);
#if CP_ALGO_USE_MMAP
if (padded >= MEGABYTE) { munmap(p, padded); return; }
#endif
::operator delete(p, padded, std::align_val_t(align));
}
private:
static constexpr std::size_t MEGABYTE = 1 << 20;
static constexpr std::size_t round_up(std::size_t x) noexcept {
return (x + Align - 1) / Align * Align;
}
};
}
#line 7 "cp-algo/math/cvector.hpp"
#include <ranges>
#line 9 "cp-algo/math/cvector.hpp"
namespace stdx = std::experimental;
namespace cp_algo::math::fft {
static constexpr size_t flen = 4;
using ftype = double;
using vftype = dx4;
using point = complex<ftype>;
using vpoint = complex<vftype>;
static constexpr vftype vz = {};
vpoint vi(vpoint const& r) {
return {-imag(r), real(r)};
}
struct cvector {
std::vector<vpoint, big_alloc<vpoint>> r;
cvector(size_t n) {
n = std::max(flen, std::bit_ceil(n));
r.resize(n / flen);
checkpoint("cvector create");
}
vpoint& at(size_t k) {return r[k / flen];}
vpoint at(size_t k) const {return r[k / flen];}
template<class pt = point>
void set(size_t k, pt t) {
if constexpr(std::is_same_v<pt, point>) {
real(r[k / flen])[k % flen] = real(t);
imag(r[k / flen])[k % flen] = imag(t);
} else {
at(k) = t;
}
}
template<class pt = point>
pt get(size_t k) const {
if constexpr(std::is_same_v<pt, point>) {
return {real(r[k / flen])[k % flen], imag(r[k / flen])[k % flen]};
} else {
return at(k);
}
}
size_t size() const {
return flen * r.size();
}
static constexpr size_t eval_arg(size_t n) {
if(n < pre_evals) {
return eval_args[n];
} else {
return eval_arg(n / 2) | (n & 1) << (std::bit_width(n) - 1);
}
}
static constexpr point eval_point(size_t n) {
if(n % 2) {
return -eval_point(n - 1);
} else if(n % 4) {
return eval_point(n - 2) * point(0, 1);
} else if(n / 4 < pre_evals) {
return evalp[n / 4];
} else {
return polar<ftype>(1., std::numbers::pi / (ftype)std::bit_floor(n) * (ftype)eval_arg(n));
}
}
static constexpr std::array<point, 32> roots = []() {
std::array<point, 32> res;
for(size_t i = 2; i < 32; i++) {
res[i] = polar<ftype>(1., std::numbers::pi / (1ull << (i - 2)));
}
return res;
}();
static constexpr point root(size_t n) {
return roots[std::bit_width(n)];
}
template<int step>
static void exec_on_eval(size_t n, size_t k, auto &&callback) {
callback(k, root(4 * step * n) * eval_point(step * k));
}
template<int step>
static void exec_on_evals(size_t n, auto &&callback) {
point factor = root(4 * step * n);
for(size_t i = 0; i < n; i++) {
callback(i, factor * eval_point(step * i));
}
}
void dot(cvector const& t) {
size_t n = this->size();
exec_on_evals<1>(n / flen, [&](size_t k, point rt) {
k *= flen;
auto [Ax, Ay] = at(k);
auto Bv = t.at(k);
vpoint res = vz;
for (size_t i = 0; i < flen; i++) {
res += vpoint(vz + Ax[i], vz + Ay[i]) * Bv;
real(Bv) = rotate_right(real(Bv));
imag(Bv) = rotate_right(imag(Bv));
auto x = real(Bv)[0], y = imag(Bv)[0];
real(Bv)[0] = x * real(rt) - y * imag(rt);
imag(Bv)[0] = x * imag(rt) + y * real(rt);
}
set(k, res);
});
checkpoint("dot");
}
template<bool partial = true>
void ifft() {
size_t n = size();
if constexpr (!partial) {
point pi(0, 1);
exec_on_evals<4>(n / 4, [&](size_t k, point rt) {
k *= 4;
point v1 = conj(rt);
point v2 = v1 * v1;
point v3 = v1 * v2;
auto A = get(k);
auto B = get(k + 1);
auto C = get(k + 2);
auto D = get(k + 3);
set(k, (A + B) + (C + D));
set(k + 2, ((A + B) - (C + D)) * v2);
set(k + 1, ((A - B) - pi * (C - D)) * v1);
set(k + 3, ((A - B) + pi * (C - D)) * v3);
});
}
bool parity = std::countr_zero(n) % 2;
if(parity) {
exec_on_evals<2>(n / (2 * flen), [&](size_t k, point rt) {
k *= 2 * flen;
vpoint cvrt = {vz + real(rt), vz - imag(rt)};
auto B = at(k) - at(k + flen);
at(k) += at(k + flen);
at(k + flen) = B * cvrt;
});
}
for(size_t leaf = 3 * flen; leaf < n; leaf += 4 * flen) {
size_t level = std::countr_one(leaf + 3);
for(size_t lvl = 4 + parity; lvl <= level; lvl += 2) {
size_t i = (1 << lvl) / 4;
exec_on_eval<4>(n >> lvl, leaf >> lvl, [&](size_t k, point rt) {
k <<= lvl;
vpoint v1 = {vz + real(rt), vz - imag(rt)};
vpoint v2 = v1 * v1;
vpoint v3 = v1 * v2;
for(size_t j = k; j < k + i; j += flen) {
auto A = at(j);
auto B = at(j + i);
auto C = at(j + 2 * i);
auto D = at(j + 3 * i);
at(j) = ((A + B) + (C + D));
at(j + 2 * i) = ((A + B) - (C + D)) * v2;
at(j + i) = ((A - B) - vi(C - D)) * v1;
at(j + 3 * i) = ((A - B) + vi(C - D)) * v3;
}
});
}
}
checkpoint("ifft");
for(size_t k = 0; k < n; k += flen) {
if constexpr (partial) {
set(k, get<vpoint>(k) /= vz + ftype(n / flen));
} else {
set(k, get<vpoint>(k) /= vz + ftype(n));
}
}
}
template<bool partial = true>
void fft() {
size_t n = size();
bool parity = std::countr_zero(n) % 2;
for(size_t leaf = 0; leaf < n; leaf += 4 * flen) {
size_t level = std::countr_zero(n + leaf);
level -= level % 2 != parity;
for(size_t lvl = level; lvl >= 4; lvl -= 2) {
size_t i = (1 << lvl) / 4;
exec_on_eval<4>(n >> lvl, leaf >> lvl, [&](size_t k, point rt) {
k <<= lvl;
vpoint v1 = {vz + real(rt), vz + imag(rt)};
vpoint v2 = v1 * v1;
vpoint v3 = v1 * v2;
for(size_t j = k; j < k + i; j += flen) {
auto A = at(j);
auto B = at(j + i) * v1;
auto C = at(j + 2 * i) * v2;
auto D = at(j + 3 * i) * v3;
at(j) = (A + C) + (B + D);
at(j + i) = (A + C) - (B + D);
at(j + 2 * i) = (A - C) + vi(B - D);
at(j + 3 * i) = (A - C) - vi(B - D);
}
});
}
}
if(parity) {
exec_on_evals<2>(n / (2 * flen), [&](size_t k, point rt) {
k *= 2 * flen;
vpoint vrt = {vz + real(rt), vz + imag(rt)};
auto t = at(k + flen) * vrt;
at(k + flen) = at(k) - t;
at(k) += t;
});
}
if constexpr (!partial) {
point pi(0, 1);
exec_on_evals<4>(n / 4, [&](size_t k, point rt) {
k *= 4;
point v1 = rt;
point v2 = v1 * v1;
point v3 = v1 * v2;
auto A = get(k);
auto B = get(k + 1) * v1;
auto C = get(k + 2) * v2;
auto D = get(k + 3) * v3;
set(k, (A + C) + (B + D));
set(k + 1, (A + C) - (B + D));
set(k + 2, (A - C) + pi * (B - D));
set(k + 3, (A - C) - pi * (B - D));
});
}
checkpoint("fft");
}
static constexpr size_t pre_evals = 1 << 16;
static const std::array<size_t, pre_evals> eval_args;
static const std::array<point, pre_evals> evalp;
};
const std::array<size_t, cvector::pre_evals> cvector::eval_args = []() {
std::array<size_t, pre_evals> res = {};
for(size_t i = 1; i < pre_evals; i++) {
res[i] = res[i >> 1] | (i & 1) << (std::bit_width(i) - 1);
}
return res;
}();
const std::array<point, cvector::pre_evals> cvector::evalp = []() {
std::array<point, pre_evals> res = {};
res[0] = 1;
for(size_t n = 1; n < pre_evals; n++) {
res[n] = polar<ftype>(1., std::numbers::pi * ftype(eval_args[n]) / ftype(4 * std::bit_floor(n)));
}
return res;
}();
}
#line 9 "cp-algo/math/fft.hpp"
namespace cp_algo::math::fft {
template<modint_type base>
struct dft {
cvector A, B;
static base factor, ifactor;
using Int2 = base::Int2;
static bool _init;
static int split() {
static const int splt = int(std::sqrt(base::mod())) + 1;
return splt;
}
static uint32_t mod, imod;
static void init() {
if(!_init) {
factor = 1 + random::rng() % (base::mod() - 1);
ifactor = base(1) / factor;
mod = base::mod();
imod = -inv2<uint32_t>(base::mod());
_init = true;
}
}
dft(size_t n): A(n), B(n) {init();}
dft(auto const& a, size_t n, bool partial = true): A(n), B(n) {
init();
base b2x32 = bpow(base(2), 32);
u64x4 cur = {
(bpow(factor, 1) * b2x32).getr(),
(bpow(factor, 2) * b2x32).getr(),
(bpow(factor, 3) * b2x32).getr(),
(bpow(factor, 4) * b2x32).getr()
};
u64x4 step4 = u64x4{} + (bpow(factor, 4) * b2x32).getr();
u64x4 stepn = u64x4{} + (bpow(factor, n) * b2x32).getr();
for(size_t i = 0; i < std::min(n, std::size(a)); i += flen) {
auto splt = [&](size_t i, auto mul) {
if(i >= std::size(a)) {
return std::pair{vftype(), vftype()};
}
u64x4 au = {
i < std::size(a) ? a[i].getr() : 0,
i + 1 < std::size(a) ? a[i + 1].getr() : 0,
i + 2 < std::size(a) ? a[i + 2].getr() : 0,
i + 3 < std::size(a) ? a[i + 3].getr() : 0
};
au = montgomery_mul(au, mul, mod, imod);
au = au >= base::mod() ? au - base::mod() : au;
auto ai = to_double(i64x4(au >= base::mod() / 2 ? au - base::mod() : au));
auto quo = round(ai / split());
return std::pair{ai - quo * split(), quo};
};
auto [rai, qai] = splt(i, cur);
auto [rani, qani] = splt(n + i, montgomery_mul(cur, stepn, mod, imod));
A.at(i) = vpoint(rai, rani);
B.at(i) = vpoint(qai, qani);
cur = montgomery_mul(cur, step4, mod, imod);
}
checkpoint("dft init");
if(n) {
if(partial) {
A.fft();
B.fft();
} else {
A.template fft<false>();
B.template fft<false>();
}
}
}
template<bool overwrite = true, bool partial = true>
void dot(auto const& C, auto const& D, auto &Aout, auto &Bout, auto &Cout) const {
cvector::exec_on_evals<1>(A.size() / flen, [&](size_t k, point rt) {
k *= flen;
vpoint AC, AD, BC, BD;
AC = AD = BC = BD = vz;
auto Cv = C.at(k), Dv = D.at(k);
if constexpr(partial) {
auto [Ax, Ay] = A.at(k);
auto [Bx, By] = B.at(k);
for (size_t i = 0; i < flen; i++) {
vpoint Av = {vz + Ax[i], vz + Ay[i]}, Bv = {vz + Bx[i], vz + By[i]};
AC += Av * Cv; AD += Av * Dv;
BC += Bv * Cv; BD += Bv * Dv;
real(Cv) = rotate_right(real(Cv));
imag(Cv) = rotate_right(imag(Cv));
real(Dv) = rotate_right(real(Dv));
imag(Dv) = rotate_right(imag(Dv));
auto cx = real(Cv)[0], cy = imag(Cv)[0];
auto dx = real(Dv)[0], dy = imag(Dv)[0];
real(Cv)[0] = cx * real(rt) - cy * imag(rt);
imag(Cv)[0] = cx * imag(rt) + cy * real(rt);
real(Dv)[0] = dx * real(rt) - dy * imag(rt);
imag(Dv)[0] = dx * imag(rt) + dy * real(rt);
}
} else {
AC = A.at(k) * Cv;
AD = A.at(k) * Dv;
BC = B.at(k) * Cv;
BD = B.at(k) * Dv;
}
if constexpr (overwrite) {
Aout.at(k) = AC;
Cout.at(k) = AD + BC;
Bout.at(k) = BD;
} else {
Aout.at(k) += AC;
Cout.at(k) += AD + BC;
Bout.at(k) += BD;
}
});
checkpoint("dot");
}
void dot(auto &&C, auto const& D) {
dot(C, D, A, B, C);
}
void recover_mod(auto &&C, auto &res, size_t k) {
size_t check = (k + flen - 1) / flen * flen;
assert(res.size() >= check);
size_t n = A.size();
auto const splitsplit = base(split() * split()).getr();
base b2x32 = bpow(base(2), 32);
base b2x64 = bpow(base(2), 64);
u64x4 cur = {
(bpow(ifactor, 2) * b2x64).getr(),
(bpow(ifactor, 3) * b2x64).getr(),
(bpow(ifactor, 4) * b2x64).getr(),
(bpow(ifactor, 5) * b2x64).getr()
};
u64x4 step4 = u64x4{} + (bpow(ifactor, 4) * b2x32).getr();
u64x4 stepn = u64x4{} + (bpow(ifactor, n) * b2x32).getr();
for(size_t i = 0; i < std::min(n, k); i += flen) {
auto [Ax, Ay] = A.at(i);
auto [Bx, By] = B.at(i);
auto [Cx, Cy] = C.at(i);
auto set_i = [&](size_t i, auto A, auto B, auto C, auto mul) {
auto A0 = lround(A), A1 = lround(C), A2 = lround(B);
auto Ai = A0 + A1 * split() + A2 * splitsplit + uint64_t(base::modmod());
auto Au = montgomery_reduce(u64x4(Ai), mod, imod);
Au = montgomery_mul(Au, mul, mod, imod);
Au = Au >= base::mod() ? Au - base::mod() : Au;
for(size_t j = 0; j < flen; j++) {
res[i + j].setr(typename base::UInt(Au[j]));
}
};
set_i(i, Ax, Bx, Cx, cur);
if(i + n < k) {
set_i(i + n, Ay, By, Cy, montgomery_mul(cur, stepn, mod, imod));
}
cur = montgomery_mul(cur, step4, mod, imod);
}
checkpoint("recover mod");
}
void mul(auto &&C, auto const& D, auto &res, size_t k) {
assert(A.size() == C.size());
size_t n = A.size();
if(!n) {
res = {};
return;
}
dot(C, D);
A.ifft();
B.ifft();
C.ifft();
recover_mod(C, res, k);
}
void mul_inplace(auto &&B, auto& res, size_t k) {
mul(B.A, B.B, res, k);
}
void mul(auto const& B, auto& res, size_t k) {
mul(cvector(B.A), B.B, res, k);
}
std::vector<base, big_alloc<base>> operator *= (dft &B) {
std::vector<base, big_alloc<base>> res(2 * A.size());
mul_inplace(B, res, 2 * A.size());
return res;
}
std::vector<base, big_alloc<base>> operator *= (dft const& B) {
std::vector<base, big_alloc<base>> res(2 * A.size());
mul(B, res, 2 * A.size());
return res;
}
auto operator * (dft const& B) const {
return dft(*this) *= B;
}
point operator [](int i) const {return A.get(i);}
};
template<modint_type base> base dft<base>::factor = 1;
template<modint_type base> base dft<base>::ifactor = 1;
template<modint_type base> bool dft<base>::_init = false;
template<modint_type base> uint32_t dft<base>::mod = {};
template<modint_type base> uint32_t dft<base>::imod = {};
void mul_slow(auto &a, auto const& b, size_t k) {
if(std::empty(a) || std::empty(b)) {
a.clear();
} else {
size_t n = std::min(k, std::size(a));
size_t m = std::min(k, std::size(b));
a.resize(k);
for(int j = int(k - 1); j >= 0; j--) {
a[j] *= b[0];
for(int i = std::max(j - (int)n, 0) + 1; i < std::min(j + 1, (int)m); i++) {
a[j] += a[j - i] * b[i];
}
}
}
}
size_t com_size(size_t as, size_t bs) {
if(!as || !bs) {
return 0;
}
return std::max(flen, std::bit_ceil(as + bs - 1) / 2);
}
void mul_truncate(auto &a, auto const& b, size_t k) {
using base = std::decay_t<decltype(a[0])>;
if(std::min({k, std::size(a), std::size(b)}) < magic) {
mul_slow(a, b, k);
return;
}
auto n = std::max(flen, std::bit_ceil(
std::min(k, std::size(a)) + std::min(k, std::size(b)) - 1
) / 2);
auto A = dft<base>(a | std::views::take(k), n);
auto B = dft<base>(b | std::views::take(k), n);
a.resize((k + flen - 1) / flen * flen);
A.mul_inplace(B, a, k);
a.resize(k);
}
// store mod x^n-k in first half, x^n+k in second half
void mod_split(auto &&x, size_t n, auto k) {
using base = std::decay_t<decltype(k)>;
dft<base>::init();
assert(std::size(x) == 2 * n);
u64x4 cur = u64x4{} + (k * bpow(base(2), 32)).getr();
for(size_t i = 0; i < n; i += flen) {
u64x4 xl = {
x[i].getr(),
x[i + 1].getr(),
x[i + 2].getr(),
x[i + 3].getr()
};
u64x4 xr = {
x[n + i].getr(),
x[n + i + 1].getr(),
x[n + i + 2].getr(),
x[n + i + 3].getr()
};
xr = montgomery_mul(xr, cur, dft<base>::mod, dft<base>::imod);
xr = xr >= base::mod() ? xr - base::mod() : xr;
auto t = xr;
xr = xl - t;
xl += t;
xl = xl >= base::mod() ? xl - base::mod() : xl;
xr = xr >= base::mod() ? xr + base::mod() : xr;
for(size_t k = 0; k < flen; k++) {
x[i + k].setr(typename base::UInt(xl[k]));
x[n + i + k].setr(typename base::UInt(xr[k]));
}
}
cp_algo::checkpoint("mod split");
}
void cyclic_mul(auto &a, auto &&b, size_t k) {
assert(std::popcount(k) == 1);
assert(std::size(a) == std::size(b) && std::size(a) == k);
using base = std::decay_t<decltype(a[0])>;
dft<base>::init();
if(k <= (1 << 16)) {
auto ap = std::ranges::to<std::vector<base, big_alloc<base>>>(a);
mul_truncate(ap, b, 2 * k);
mod_split(ap, k, bpow(dft<base>::factor, k));
std::ranges::copy(ap | std::views::take(k), begin(a));
return;
}
k /= 2;
auto factor = bpow(dft<base>::factor, k);
mod_split(a, k, factor);
mod_split(b, k, factor);
auto la = std::span(a).first(k);
auto lb = std::span(b).first(k);
auto ra = std::span(a).last(k);
auto rb = std::span(b).last(k);
cyclic_mul(la, lb, k);
auto A = dft<base>(ra, k / 2);
auto B = dft<base>(rb, k / 2);
A.mul_inplace(B, ra, k);
base i2 = base(2).inv();
factor = factor.inv() * i2;
for(size_t i = 0; i < k; i++) {
auto t = (a[i] + a[i + k]) * i2;
a[i + k] = (a[i] - a[i + k]) * factor;
a[i] = t;
}
cp_algo::checkpoint("mod join");
}
auto make_copy(auto &&x) {
return x;
}
void cyclic_mul(auto &a, auto const& b, size_t k) {
return cyclic_mul(a, make_copy(b), k);
}
void mul(auto &a, auto &&b) {
size_t N = size(a) + size(b);
if(N > (1 << 20)) {
N--;
size_t NN = std::bit_ceil(N);
a.resize(NN);
b.resize(NN);
cyclic_mul(a, b, NN);
a.resize(N);
} else {
mul_truncate(a, b, N - 1);
}
}
void mul(auto &a, auto const& b) {
size_t N = size(a) + size(b);
if(N > (1 << 20)) {
mul(a, make_copy(b));
} else {
mul_truncate(a, b, N - 1);
}
}
}
#line 9 "verify/poly/convolution_mul.test.cpp"
using namespace std;
using base = cp_algo::math::modint<998244353>;
void solve() {
int p;
cin >> p;
auto g = cp_algo::math::primitive_root(p);
vector<int> lg(p);
int64_t cur = 1;
for(int i = 0; i < p - 1; i++) {
lg[cur] = i;
cur *= g;
cur %= p;
}
cp_algo::checkpoint("find lg");
base a0, b0, as = 0, bs = 0;
vector<base> a(p-1), b(p-1);
cin >> a0;
for(int i = 1; i <= p - 1; i++) {
cin >> a[lg[i]];
as += a[lg[i]];
}
cin >> b0;
for(int i = 1; i <= p - 1; i++) {
cin >> b[lg[i]];
bs += b[lg[i]];
}
cp_algo::checkpoint("read");
base c0 = (a0 + as) * (b0 + bs) - as * bs;
cout << c0 << " ";
cp_algo::math::fft::mul(a, b);
for(size_t i = p-1; i < size(a); i++) {
a[i - (p-1)] += a[i];
}
for(int i = 1; i <= p - 1; i++) {
cout << a[lg[i]] << " ";
}
cp_algo::checkpoint("write");
cp_algo::checkpoint<1>();
}
signed main() {
//freopen("input.txt", "r", stdin);
ios::sync_with_stdio(0);
cin.tie(0);
solve();
}
Env | Name | Status | Elapsed | Memory |
---|---|---|---|---|
g++ | all_zero_00 |
![]() |
5 ms | 6 MB |
g++ | all_zero_01 |
![]() |
4 ms | 6 MB |
g++ | all_zero_02 |
![]() |
4 ms | 6 MB |
g++ | all_zero_03 |
![]() |
4 ms | 6 MB |
g++ | example_00 |
![]() |
4 ms | 6 MB |
g++ | example_01 |
![]() |
4 ms | 6 MB |
g++ | large_00 |
![]() |
6 ms | 7 MB |
g++ | large_01 |
![]() |
8 ms | 9 MB |
g++ | large_02 |
![]() |
11 ms | 12 MB |
g++ | large_03 |
![]() |
17 ms | 19 MB |
g++ | large_04 |
![]() |
28 ms | 30 MB |
g++ | large_05 |
![]() |
59 ms | 59 MB |
g++ | medium_00 |
![]() |
5 ms | 6 MB |
g++ | medium_01 |
![]() |
4 ms | 6 MB |
g++ | medium_02 |
![]() |
4 ms | 6 MB |
g++ | medium_03 |
![]() |
4 ms | 6 MB |
g++ | medium_04 |
![]() |
4 ms | 6 MB |
g++ | medium_05 |
![]() |
5 ms | 6 MB |
g++ | medium_06 |
![]() |
4 ms | 6 MB |
g++ | medium_07 |
![]() |
5 ms | 6 MB |
g++ | medium_08 |
![]() |
5 ms | 7 MB |
g++ | medium_09 |
![]() |
5 ms | 7 MB |
g++ | medium_10 |
![]() |
5 ms | 7 MB |
g++ | medium_11 |
![]() |
5 ms | 6 MB |
g++ | p_max_00 |
![]() |
57 ms | 59 MB |
g++ | p_max_01 |
![]() |
55 ms | 59 MB |
g++ | p_max_02 |
![]() |
56 ms | 59 MB |
g++ | p_max_03 |
![]() |
57 ms | 59 MB |
g++ | small_00 |
![]() |
5 ms | 6 MB |
g++ | small_01 |
![]() |
4 ms | 6 MB |
g++ | small_02 |
![]() |
4 ms | 6 MB |
g++ | small_03 |
![]() |
4 ms | 6 MB |
g++ | small_04 |
![]() |
4 ms | 6 MB |
g++ | small_05 |
![]() |
4 ms | 6 MB |
g++ | small_06 |
![]() |
4 ms | 6 MB |
g++ | small_07 |
![]() |
4 ms | 6 MB |
g++ | small_08 |
![]() |
4 ms | 6 MB |
g++ | small_09 |
![]() |
4 ms | 6 MB |
g++ | small_10 |
![]() |
4 ms | 6 MB |
g++ | small_11 |
![]() |
4 ms | 6 MB |