This documentation is automatically generated by competitive-verifier/competitive-verifier
#include "cp-algo/linalg/matrix.hpp"
#ifndef CP_ALGO_LINALG_MATRIX_HPP
#define CP_ALGO_LINALG_MATRIX_HPP
#include "../random/rng.hpp"
#include "../math/common.hpp"
#include "vector.hpp"
#include <iostream>
#include <optional>
#include <cassert>
#include <vector>
#include <array>
namespace cp_algo::linalg {
enum gauss_mode {normal, reverse};
template<typename base_t, class _vec_t = std::conditional_t<
math::modint_type<base_t>,
modint_vec<base_t>,
vec<base_t>>>
struct matrix: std::vector<_vec_t> {
using vec_t = _vec_t;
using base = base_t;
using Base = std::vector<vec_t>;
using Base::Base;
matrix(size_t n): Base(n, vec_t(n)) {}
matrix(size_t n, size_t m): Base(n, vec_t(m)) {}
matrix(Base const& t): Base(t) {}
matrix(Base &&t): Base(std::move(t)) {}
template<std::ranges::input_range R>
matrix(R &&r): Base(std::ranges::to<Base>(std::forward<R>(r))) {}
size_t n() const {return size(*this);}
size_t m() const {return n() ? size(row(0)) : 0;}
void resize(size_t n, size_t m) {
Base::resize(n);
for(auto &it: *this) {
it.resize(m);
}
}
auto& row(size_t i) {return (*this)[i];}
auto const& row(size_t i) const {return (*this)[i];}
auto elements() {return *this | std::views::join;}
auto elements() const {return *this | std::views::join;}
matrix operator-() const {
return *this | std::views::transform([](auto x) {return vec_t(-x);});
}
matrix& operator+=(matrix const& t) {
for(auto [a, b]: std::views::zip(elements(), t.elements())) {
a += b;
}
return *this;
}
matrix& operator -=(matrix const& t) {
for(auto [a, b]: std::views::zip(elements(), t.elements())) {
a -= b;
}
return *this;
}
matrix operator+(matrix const& t) const {return matrix(*this) += t;}
matrix operator-(matrix const& t) const {return matrix(*this) -= t;}
matrix& operator *=(base t) {for(auto &it: *this) it *= t; return *this;}
matrix operator *(base t) const {return matrix(*this) *= t;}
matrix& operator /=(base t) {return *this *= base(1) / t;}
matrix operator /(base t) const {return matrix(*this) /= t;}
// Make sure the result is matrix, not Base
matrix& operator *=(matrix const& t) {return *this = *this * t;}
void read_transposed() {
for(size_t j = 0; j < m(); j++) {
for(size_t i = 0; i < n(); i++) {
std::cin >> (*this)[i][j];
}
}
}
void read() {
for(auto &it: *this) {
it.read();
}
}
void print() const {
for(auto const& it: *this) {
it.print();
}
}
static matrix block_diagonal(std::vector<matrix> const& blocks) {
size_t n = 0;
for(auto &it: blocks) {
assert(it.n() == it.m());
n += it.n();
}
matrix res(n);
n = 0;
for(auto &it: blocks) {
for(size_t i = 0; i < it.n(); i++) {
std::ranges::copy(it[i], begin(res[n + i]) + n);
}
n += it.n();
}
return res;
}
static matrix random(size_t n, size_t m) {
matrix res(n, m);
std::ranges::generate(res, std::bind(vec_t::random, m));
return res;
}
static matrix random(size_t n) {
return random(n, n);
}
static matrix eye(size_t n) {
matrix res(n);
for(size_t i = 0; i < n; i++) {
res[i][i] = 1;
}
return res;
}
// Concatenate matrices
matrix operator |(matrix const& b) const {
assert(n() == b.n());
matrix res(n(), m()+b.m());
for(size_t i = 0; i < n(); i++) {
res[i] = row(i) | b[i];
}
return res;
}
void assign_submatrix(auto viewx, auto viewy, matrix const& t) {
for(auto [a, b]: std::views::zip(*this | viewx, t)) {
std::ranges::copy(b, begin(a | viewy));
}
}
auto submatrix(auto viewx, auto viewy) const {
return *this | viewx | std::views::transform([viewy](auto const& y) {
return y | viewy;
});
}
matrix T() const {
matrix res(m(), n());
for(size_t i = 0; i < n(); i++) {
for(size_t j = 0; j < m(); j++) {
res[j][i] = row(i)[j];
}
}
return res;
}
matrix operator *(matrix const& b) const {
assert(m() == b.n());
matrix res(n(), b.m());
for(size_t i = 0; i < n(); i++) {
for(size_t j = 0; j < m(); j++) {
res[i].add_scaled(b[j], row(i)[j]);
}
}
return res.normalize();
}
vec_t apply(vec_t const& x) const {
return (matrix(1, x) * *this)[0];
}
matrix pow(uint64_t k) const {
assert(n() == m());
return bpow(*this, k, eye(n()));
}
matrix& normalize() {
for(auto &it: *this) {
it.normalize();
}
return *this;
}
template<gauss_mode mode = normal>
void eliminate(size_t i, size_t k) {
auto kinv = base(1) / row(i).normalize()[k];
for(size_t j = (mode == normal) * i; j < n(); j++) {
if(j != i) {
row(j).add_scaled(row(i), -row(j).normalize(k) * kinv);
}
}
}
template<gauss_mode mode = normal>
void eliminate(size_t i) {
row(i).normalize();
for(size_t j = (mode == normal) * i; j < n(); j++) {
if(j != i) {
row(j).reduce_by(row(i));
}
}
}
template<gauss_mode mode = normal>
matrix& gauss() {
for(size_t i = 0; i < n(); i++) {
eliminate<mode>(i);
}
return normalize();
}
template<gauss_mode mode = normal>
auto echelonize(size_t lim) {
return gauss<mode>().sort_classify(lim);
}
template<gauss_mode mode = normal>
auto echelonize() {
return echelonize<mode>(m());
}
size_t rank() const {
if(n() > m()) {
return T().rank();
}
return size(matrix(*this).echelonize()[0]);
}
base det() const {
assert(n() == m());
matrix b = *this;
b.echelonize();
base res = 1;
for(size_t i = 0; i < n(); i++) {
res *= b[i][i];
}
return res;
}
std::pair<base, matrix> inv() const {
assert(n() == m());
matrix b = *this | eye(n());
if(size(b.echelonize<reverse>(n())[0]) < n()) {
return {0, {}};
}
base det = 1;
for(size_t i = 0; i < n(); i++) {
det *= b[i][i];
b[i] *= base(1) / b[i][i];
}
return {det, b.submatrix(std::views::all, std::views::drop(n()))};
}
// Can also just run gauss on T() | eye(m)
// but it would be slower :(
auto kernel() const {
auto A = *this;
auto [pivots, free] = A.template echelonize<reverse>();
matrix sols(size(free), m());
for(size_t j = 0; j < size(pivots); j++) {
base scale = base(1) / A[j][pivots[j]];
for(size_t i = 0; i < size(free); i++) {
sols[i][pivots[j]] = A[j][free[i]] * scale;
}
}
for(size_t i = 0; i < size(free); i++) {
sols[i][free[i]] = -1;
}
return sols;
}
// [solution, basis], transposed
std::optional<std::array<matrix, 2>> solve(matrix t) const {
matrix sols = (*this | t).kernel();
if(sols.n() < t.m() || matrix(sols.submatrix(
std::views::drop(sols.n() - t.m()),
std::views::drop(m())
)) != -eye(t.m())) {
return std::nullopt;
} else {
return std::array{
matrix(sols.submatrix(std::views::drop(sols.n() - t.m()), std::views::take(m()))),
matrix(sols.submatrix(std::views::take(sols.n() - t.m()), std::views::take(m())))
};
}
}
// To be called after a gaussian elimination run
// Sorts rows by pivots and classifies
// variables into pivots and free
auto sort_classify(size_t lim) {
size_t rk = 0;
std::vector<size_t> free, pivots;
for(size_t j = 0; j < lim; j++) {
for(size_t i = rk + 1; i < n() && row(rk)[j] == base(0); i++) {
if(row(i)[j] != base(0)) {
std::swap(row(i), row(rk));
row(rk) = -row(rk);
}
}
if(rk < n() && row(rk)[j] != base(0)) {
pivots.push_back(j);
rk++;
} else {
free.push_back(j);
}
}
return std::array{pivots, free};
}
};
template<typename base_t>
auto operator *(base_t t, matrix<base_t> const& A) {return A * t;}
}
#endif // CP_ALGO_LINALG_MATRIX_HPP
#line 1 "cp-algo/linalg/matrix.hpp"
#line 1 "cp-algo/random/rng.hpp"
#include <chrono>
#include <random>
namespace cp_algo::random {
uint64_t rng() {
static std::mt19937_64 rng(
std::chrono::steady_clock::now().time_since_epoch().count()
);
return rng();
}
}
#line 1 "cp-algo/math/common.hpp"
#include <functional>
#include <cstdint>
#include <cassert>
namespace cp_algo::math {
#ifdef CP_ALGO_MAXN
const int maxn = CP_ALGO_MAXN;
#else
const int maxn = 1 << 19;
#endif
const int magic = 64; // threshold for sizes to run the naive algo
auto bpow(auto const& x, auto n, auto const& one, auto op) {
if(n == 0) {
return one;
} else {
auto t = bpow(x, n / 2, one, op);
t = op(t, t);
if(n % 2) {
t = op(t, x);
}
return t;
}
}
auto bpow(auto x, auto n, auto ans) {
return bpow(x, n, ans, std::multiplies{});
}
template<typename T>
T bpow(T const& x, auto n) {
return bpow(x, n, T(1));
}
inline constexpr auto inv2(auto x) {
assert(x % 2);
std::make_unsigned_t<decltype(x)> y = 1;
while(y * x != 1) {
y *= 2 - x * y;
}
return y;
}
}
#line 1 "cp-algo/linalg/vector.hpp"
#line 1 "cp-algo/number_theory/modint.hpp"
#line 4 "cp-algo/number_theory/modint.hpp"
#include <iostream>
#line 6 "cp-algo/number_theory/modint.hpp"
namespace cp_algo::math {
template<typename modint, typename _Int>
struct modint_base {
using Int = _Int;
using UInt = std::make_unsigned_t<Int>;
static constexpr size_t bits = sizeof(Int) * 8;
using Int2 = std::conditional_t<bits <= 32, int64_t, __int128_t>;
using UInt2 = std::conditional_t<bits <= 32, uint64_t, __uint128_t>;
constexpr static Int mod() {
return modint::mod();
}
constexpr static Int remod() {
return modint::remod();
}
constexpr static UInt2 modmod() {
return UInt2(mod()) * mod();
}
constexpr modint_base() = default;
constexpr modint_base(Int2 rr) {
to_modint().setr(UInt((rr + modmod()) % mod()));
}
modint inv() const {
return bpow(to_modint(), mod() - 2);
}
modint operator - () const {
modint neg;
neg.r = std::min(-r, remod() - r);
return neg;
}
modint& operator /= (const modint &t) {
return to_modint() *= t.inv();
}
modint& operator *= (const modint &t) {
r = UInt(UInt2(r) * t.r % mod());
return to_modint();
}
modint& operator += (const modint &t) {
r += t.r; r = std::min(r, r - remod());
return to_modint();
}
modint& operator -= (const modint &t) {
r -= t.r; r = std::min(r, r + remod());
return to_modint();
}
modint operator + (const modint &t) const {return modint(to_modint()) += t;}
modint operator - (const modint &t) const {return modint(to_modint()) -= t;}
modint operator * (const modint &t) const {return modint(to_modint()) *= t;}
modint operator / (const modint &t) const {return modint(to_modint()) /= t;}
// Why <=> doesn't work?..
auto operator == (const modint &t) const {return to_modint().getr() == t.getr();}
auto operator != (const modint &t) const {return to_modint().getr() != t.getr();}
auto operator <= (const modint &t) const {return to_modint().getr() <= t.getr();}
auto operator >= (const modint &t) const {return to_modint().getr() >= t.getr();}
auto operator < (const modint &t) const {return to_modint().getr() < t.getr();}
auto operator > (const modint &t) const {return to_modint().getr() > t.getr();}
Int rem() const {
UInt R = to_modint().getr();
return R - (R > (UInt)mod() / 2) * mod();
}
constexpr void setr(UInt rr) {
r = rr;
}
constexpr UInt getr() const {
return r;
}
// Only use these if you really know what you're doing!
static UInt modmod8() {return UInt(8 * modmod());}
void add_unsafe(UInt t) {r += t;}
void pseudonormalize() {r = std::min(r, r - modmod8());}
modint const& normalize() {
if(r >= (UInt)mod()) {
r %= mod();
}
return to_modint();
}
void setr_direct(UInt rr) {r = rr;}
UInt getr_direct() const {return r;}
protected:
UInt r;
private:
constexpr modint& to_modint() {return static_cast<modint&>(*this);}
constexpr modint const& to_modint() const {return static_cast<modint const&>(*this);}
};
template<typename modint>
concept modint_type = std::is_base_of_v<modint_base<modint, typename modint::Int>, modint>;
template<modint_type modint>
decltype(std::cin)& operator >> (decltype(std::cin) &in, modint &x) {
typename modint::UInt r;
auto &res = in >> r;
x.setr(r);
return res;
}
template<modint_type modint>
decltype(std::cout)& operator << (decltype(std::cout) &out, modint const& x) {
return out << x.getr();
}
template<auto m>
struct modint: modint_base<modint<m>, decltype(m)> {
using Base = modint_base<modint<m>, decltype(m)>;
using Base::Base;
static constexpr Base::Int mod() {return m;}
static constexpr Base::UInt remod() {return m;}
auto getr() const {return Base::r;}
};
template<typename Int = int>
struct dynamic_modint: modint_base<dynamic_modint<Int>, Int> {
using Base = modint_base<dynamic_modint<Int>, Int>;
using Base::Base;
static Base::UInt m_reduce(Base::UInt2 ab) {
if(mod() % 2 == 0) [[unlikely]] {
return typename Base::UInt(ab % mod());
} else {
typename Base::UInt2 m = typename Base::UInt(ab) * imod();
return typename Base::UInt((ab + m * mod()) >> Base::bits);
}
}
static Base::UInt m_transform(Base::UInt a) {
if(mod() % 2 == 0) [[unlikely]] {
return a;
} else {
return m_reduce(a * pw128());
}
}
dynamic_modint& operator *= (const dynamic_modint &t) {
Base::r = m_reduce(typename Base::UInt2(Base::r) * t.r);
return *this;
}
void setr(Base::UInt rr) {
Base::r = m_transform(rr);
}
Base::UInt getr() const {
typename Base::UInt res = m_reduce(Base::r);
return std::min(res, res - mod());
}
static Int mod() {return m;}
static Int remod() {return 2 * m;}
static Base::UInt imod() {return im;}
static Base::UInt2 pw128() {return r2;}
static void switch_mod(Int nm) {
m = nm;
im = m % 2 ? inv2(-m) : 0;
r2 = static_cast<Base::UInt>(static_cast<Base::UInt2>(-1) % m + 1);
}
// Wrapper for temp switching
auto static with_mod(Int tmp, auto callback) {
struct scoped {
Int prev = mod();
~scoped() {switch_mod(prev);}
} _;
switch_mod(tmp);
return callback();
}
private:
static thread_local Int m;
static thread_local Base::UInt im, r2;
};
template<typename Int>
Int thread_local dynamic_modint<Int>::m = 1;
template<typename Int>
dynamic_modint<Int>::Base::UInt thread_local dynamic_modint<Int>::im = -1;
template<typename Int>
dynamic_modint<Int>::Base::UInt thread_local dynamic_modint<Int>::r2 = 0;
}
#line 1 "cp-algo/util/big_alloc.hpp"
#include <cstddef>
#line 6 "cp-algo/util/big_alloc.hpp"
// Single macro to detect POSIX platforms (Linux, Unix, macOS)
#if defined(__linux__) || defined(__unix__) || (defined(__APPLE__) && defined(__MACH__))
# define CP_ALGO_USE_MMAP 1
# include <sys/mman.h>
#else
# define CP_ALGO_USE_MMAP 0
#endif
namespace cp_algo {
template <typename T, std::size_t Align = 32>
class big_alloc {
static_assert( Align >= alignof(void*), "Align must be at least pointer-size");
static_assert(std::popcount(Align) == 1, "Align must be a power of two");
public:
using value_type = T;
template <class U> struct rebind { using other = big_alloc<U, Align>; };
constexpr bool operator==(const big_alloc&) const = default;
constexpr bool operator!=(const big_alloc&) const = default;
big_alloc() noexcept = default;
template <typename U, std::size_t A>
big_alloc(const big_alloc<U, A>&) noexcept {}
[[nodiscard]] T* allocate(std::size_t n) {
std::size_t padded = round_up(n * sizeof(T));
std::size_t align = std::max<std::size_t>(alignof(T), Align);
#if CP_ALGO_USE_MMAP
if (padded >= MEGABYTE) {
void* raw = mmap(nullptr, padded,
PROT_READ | PROT_WRITE,
MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
madvise(raw, padded, MADV_HUGEPAGE);
madvise(raw, padded, MADV_POPULATE_WRITE);
return static_cast<T*>(raw);
}
#endif
return static_cast<T*>(::operator new(padded, std::align_val_t(align)));
}
void deallocate(T* p, std::size_t n) noexcept {
if (!p) return;
std::size_t padded = round_up(n * sizeof(T));
std::size_t align = std::max<std::size_t>(alignof(T), Align);
#if CP_ALGO_USE_MMAP
if (padded >= MEGABYTE) { munmap(p, padded); return; }
#endif
::operator delete(p, padded, std::align_val_t(align));
}
private:
static constexpr std::size_t MEGABYTE = 1 << 20;
static constexpr std::size_t round_up(std::size_t x) noexcept {
return (x + Align - 1) / Align * Align;
}
};
}
#line 1 "cp-algo/util/simd.hpp"
#include <experimental/simd>
#line 6 "cp-algo/util/simd.hpp"
#include <memory>
namespace cp_algo {
template<typename T, size_t len>
using simd [[gnu::vector_size(len * sizeof(T))]] = T;
using i64x4 = simd<int64_t, 4>;
using u64x4 = simd<uint64_t, 4>;
using u32x8 = simd<uint32_t, 8>;
using i32x4 = simd<int32_t, 4>;
using u32x4 = simd<uint32_t, 4>;
using i16x4 = simd<int16_t, 4>;
using u8x32 = simd<uint8_t, 32>;
using dx4 = simd<double, 4>;
[[gnu::target("avx2")]] inline dx4 abs(dx4 a) {
return a < 0 ? -a : a;
}
// https://stackoverflow.com/a/77376595
// works for ints in (-2^51, 2^51)
static constexpr dx4 magic = dx4() + (3ULL << 51);
[[gnu::target("avx2")]] inline i64x4 lround(dx4 x) {
return i64x4(x + magic) - i64x4(magic);
}
[[gnu::target("avx2")]] inline dx4 to_double(i64x4 x) {
return dx4(x + i64x4(magic)) - magic;
}
[[gnu::target("avx2")]] inline dx4 round(dx4 a) {
return dx4{
std::nearbyint(a[0]),
std::nearbyint(a[1]),
std::nearbyint(a[2]),
std::nearbyint(a[3])
};
}
[[gnu::target("avx2")]] inline u64x4 low32(u64x4 x) {
return x & uint32_t(-1);
}
[[gnu::target("avx2")]] inline auto swap_bytes(auto x) {
return decltype(x)(__builtin_shufflevector(u32x8(x), u32x8(x), 1, 0, 3, 2, 5, 4, 7, 6));
}
[[gnu::target("avx2")]] inline u64x4 montgomery_reduce(u64x4 x, uint32_t mod, uint32_t imod) {
auto x_ninv = u64x4(_mm256_mul_epu32(__m256i(x), __m256i() + imod));
x += u64x4(_mm256_mul_epu32(__m256i(x_ninv), __m256i() + mod));
return swap_bytes(x);
}
[[gnu::target("avx2")]] inline u64x4 montgomery_mul(u64x4 x, u64x4 y, uint32_t mod, uint32_t imod) {
return montgomery_reduce(u64x4(_mm256_mul_epu32(__m256i(x), __m256i(y))), mod, imod);
}
[[gnu::target("avx2")]] inline u32x8 montgomery_mul(u32x8 x, u32x8 y, uint32_t mod, uint32_t imod) {
return u32x8(montgomery_mul(u64x4(x), u64x4(y), mod, imod)) |
u32x8(swap_bytes(montgomery_mul(u64x4(swap_bytes(x)), u64x4(swap_bytes(y)), mod, imod)));
}
[[gnu::target("avx2")]] inline dx4 rotate_right(dx4 x) {
static constexpr u64x4 shuffler = {3, 0, 1, 2};
return __builtin_shuffle(x, shuffler);
}
template<std::size_t Align = 32>
[[gnu::target("avx2")]] inline bool is_aligned(const auto* p) noexcept {
return (reinterpret_cast<std::uintptr_t>(p) % Align) == 0;
}
template<class Target>
[[gnu::target("avx2")]] inline Target& vector_cast(auto &&p) {
return *reinterpret_cast<Target*>(std::assume_aligned<alignof(Target)>(&p));
}
}
#line 1 "cp-algo/util/checkpoint.hpp"
#line 5 "cp-algo/util/checkpoint.hpp"
#include <string>
#include <map>
namespace cp_algo {
std::map<std::string, double> checkpoints;
template<bool final = false>
void checkpoint([[maybe_unused]] std::string const& msg = "") {
#ifdef CP_ALGO_CHECKPOINT
static double last = 0;
double now = (double)clock() / CLOCKS_PER_SEC;
double delta = now - last;
last = now;
if(msg.size() && !final) {
checkpoints[msg] += delta;
}
if(final) {
for(auto const& [key, value] : checkpoints) {
std::cerr << key << ": " << value * 1000 << " ms\n";
}
std::cerr << "Total: " << now * 1000 << " ms\n";
}
#endif
}
}
#line 9 "cp-algo/linalg/vector.hpp"
#include <algorithm>
#include <valarray>
#line 12 "cp-algo/linalg/vector.hpp"
#include <iterator>
#line 14 "cp-algo/linalg/vector.hpp"
#include <ranges>
namespace cp_algo::linalg {
template<typename base, class Alloc = big_alloc<base>>
struct vec: std::basic_string<base, std::char_traits<base>, Alloc> {
using Base = std::basic_string<base, std::char_traits<base>, Alloc>;
using Base::Base;
vec(Base const& t): Base(t) {}
vec(Base &&t): Base(std::move(t)) {}
vec(size_t n): Base(n, base()) {}
vec(auto &&r): Base(std::ranges::to<Base>(r)) {}
static vec ei(size_t n, size_t i) {
vec res(n);
res[i] = 1;
return res;
}
auto operator-() const {
return *this | std::views::transform([](auto x) {return -x;});
}
auto operator *(base t) const {
return *this | std::views::transform([t](auto x) {return x * t;});
}
auto operator *=(base t) {
for(auto &it: *this) {
it *= t;
}
return *this;
}
virtual void add_scaled(vec const& b, base scale, size_t i = 0) {
if(scale != base(0)) {
for(; i < size(*this); i++) {
(*this)[i] += scale * b[i];
}
}
}
virtual vec const& normalize() {
return static_cast<vec&>(*this);
}
virtual base normalize(size_t i) {
return (*this)[i];
}
void read() {
for(auto &it: *this) {
std::cin >> it;
}
}
void print() const {
for(auto &it: *this) {
std::cout << it << " ";
}
std::cout << "\n";
}
static vec random(size_t n) {
vec res(n);
std::ranges::generate(res, random::rng);
return res;
}
// Concatenate vectors
vec operator |(vec const& t) const {
return std::views::join(std::array{
std::views::all(*this),
std::views::all(t)
});
}
// Generally, vec shouldn't be modified
// after its pivot index is set
std::pair<size_t, base> find_pivot() {
if(pivot == size_t(-1)) {
pivot = 0;
while(pivot < size(*this) && normalize(pivot) == base(0)) {
pivot++;
}
if(pivot < size(*this)) {
pivot_inv = base(1) / (*this)[pivot];
}
}
return {pivot, pivot_inv};
}
void reduce_by(vec &t) {
auto [pivot, pinv] = t.find_pivot();
if(pivot < size(*this)) {
add_scaled(t, -normalize(pivot) * pinv, pivot);
}
}
private:
size_t pivot = -1;
base pivot_inv;
};
template<math::modint_type base, class Alloc = big_alloc<base>>
struct modint_vec: vec<base, Alloc> {
using Base = vec<base, Alloc>;
using Base::Base;
modint_vec(Base const& t): Base(t) {}
modint_vec(Base &&t): Base(std::move(t)) {}
void add_scaled(Base const& b, base scale, size_t i = 0) override {
static_assert(base::bits >= 64, "Only wide modint types for linalg");
if(scale != base(0)) {
assert(Base::size() == b.size());
size_t n = size(*this);
u64x4 scaler = u64x4() + scale.getr();
if (is_aligned(&(*this)[0]) && is_aligned(&b[0])) // verify we're not in SSO
for(i -= i % 4; i + 3 < n; i += 4) {
auto &ai = vector_cast<u64x4>((*this)[i]);
auto bi = vector_cast<u64x4 const>(b[i]);
#ifdef __AVX2__
ai += u64x4(_mm256_mul_epu32(__m256i(scaler), __m256i(bi)));
#else
ai += scaler * bi;
#endif
}
for(; i < n; i++) {
(*this)[i].add_unsafe(b[i].getr_direct() * scale.getr());
}
if(++counter == 4) {
for(auto &it: *this) {
it.pseudonormalize();
}
counter = 0;
}
}
}
Base const& normalize() override {
for(auto &it: *this) {
it.normalize();
}
return *this;
}
base normalize(size_t i) override {
return (*this)[i].normalize();
}
private:
size_t counter = 0;
};
}
#line 7 "cp-algo/linalg/matrix.hpp"
#include <optional>
#line 9 "cp-algo/linalg/matrix.hpp"
#include <vector>
#include <array>
namespace cp_algo::linalg {
enum gauss_mode {normal, reverse};
template<typename base_t, class _vec_t = std::conditional_t<
math::modint_type<base_t>,
modint_vec<base_t>,
vec<base_t>>>
struct matrix: std::vector<_vec_t> {
using vec_t = _vec_t;
using base = base_t;
using Base = std::vector<vec_t>;
using Base::Base;
matrix(size_t n): Base(n, vec_t(n)) {}
matrix(size_t n, size_t m): Base(n, vec_t(m)) {}
matrix(Base const& t): Base(t) {}
matrix(Base &&t): Base(std::move(t)) {}
template<std::ranges::input_range R>
matrix(R &&r): Base(std::ranges::to<Base>(std::forward<R>(r))) {}
size_t n() const {return size(*this);}
size_t m() const {return n() ? size(row(0)) : 0;}
void resize(size_t n, size_t m) {
Base::resize(n);
for(auto &it: *this) {
it.resize(m);
}
}
auto& row(size_t i) {return (*this)[i];}
auto const& row(size_t i) const {return (*this)[i];}
auto elements() {return *this | std::views::join;}
auto elements() const {return *this | std::views::join;}
matrix operator-() const {
return *this | std::views::transform([](auto x) {return vec_t(-x);});
}
matrix& operator+=(matrix const& t) {
for(auto [a, b]: std::views::zip(elements(), t.elements())) {
a += b;
}
return *this;
}
matrix& operator -=(matrix const& t) {
for(auto [a, b]: std::views::zip(elements(), t.elements())) {
a -= b;
}
return *this;
}
matrix operator+(matrix const& t) const {return matrix(*this) += t;}
matrix operator-(matrix const& t) const {return matrix(*this) -= t;}
matrix& operator *=(base t) {for(auto &it: *this) it *= t; return *this;}
matrix operator *(base t) const {return matrix(*this) *= t;}
matrix& operator /=(base t) {return *this *= base(1) / t;}
matrix operator /(base t) const {return matrix(*this) /= t;}
// Make sure the result is matrix, not Base
matrix& operator *=(matrix const& t) {return *this = *this * t;}
void read_transposed() {
for(size_t j = 0; j < m(); j++) {
for(size_t i = 0; i < n(); i++) {
std::cin >> (*this)[i][j];
}
}
}
void read() {
for(auto &it: *this) {
it.read();
}
}
void print() const {
for(auto const& it: *this) {
it.print();
}
}
static matrix block_diagonal(std::vector<matrix> const& blocks) {
size_t n = 0;
for(auto &it: blocks) {
assert(it.n() == it.m());
n += it.n();
}
matrix res(n);
n = 0;
for(auto &it: blocks) {
for(size_t i = 0; i < it.n(); i++) {
std::ranges::copy(it[i], begin(res[n + i]) + n);
}
n += it.n();
}
return res;
}
static matrix random(size_t n, size_t m) {
matrix res(n, m);
std::ranges::generate(res, std::bind(vec_t::random, m));
return res;
}
static matrix random(size_t n) {
return random(n, n);
}
static matrix eye(size_t n) {
matrix res(n);
for(size_t i = 0; i < n; i++) {
res[i][i] = 1;
}
return res;
}
// Concatenate matrices
matrix operator |(matrix const& b) const {
assert(n() == b.n());
matrix res(n(), m()+b.m());
for(size_t i = 0; i < n(); i++) {
res[i] = row(i) | b[i];
}
return res;
}
void assign_submatrix(auto viewx, auto viewy, matrix const& t) {
for(auto [a, b]: std::views::zip(*this | viewx, t)) {
std::ranges::copy(b, begin(a | viewy));
}
}
auto submatrix(auto viewx, auto viewy) const {
return *this | viewx | std::views::transform([viewy](auto const& y) {
return y | viewy;
});
}
matrix T() const {
matrix res(m(), n());
for(size_t i = 0; i < n(); i++) {
for(size_t j = 0; j < m(); j++) {
res[j][i] = row(i)[j];
}
}
return res;
}
matrix operator *(matrix const& b) const {
assert(m() == b.n());
matrix res(n(), b.m());
for(size_t i = 0; i < n(); i++) {
for(size_t j = 0; j < m(); j++) {
res[i].add_scaled(b[j], row(i)[j]);
}
}
return res.normalize();
}
vec_t apply(vec_t const& x) const {
return (matrix(1, x) * *this)[0];
}
matrix pow(uint64_t k) const {
assert(n() == m());
return bpow(*this, k, eye(n()));
}
matrix& normalize() {
for(auto &it: *this) {
it.normalize();
}
return *this;
}
template<gauss_mode mode = normal>
void eliminate(size_t i, size_t k) {
auto kinv = base(1) / row(i).normalize()[k];
for(size_t j = (mode == normal) * i; j < n(); j++) {
if(j != i) {
row(j).add_scaled(row(i), -row(j).normalize(k) * kinv);
}
}
}
template<gauss_mode mode = normal>
void eliminate(size_t i) {
row(i).normalize();
for(size_t j = (mode == normal) * i; j < n(); j++) {
if(j != i) {
row(j).reduce_by(row(i));
}
}
}
template<gauss_mode mode = normal>
matrix& gauss() {
for(size_t i = 0; i < n(); i++) {
eliminate<mode>(i);
}
return normalize();
}
template<gauss_mode mode = normal>
auto echelonize(size_t lim) {
return gauss<mode>().sort_classify(lim);
}
template<gauss_mode mode = normal>
auto echelonize() {
return echelonize<mode>(m());
}
size_t rank() const {
if(n() > m()) {
return T().rank();
}
return size(matrix(*this).echelonize()[0]);
}
base det() const {
assert(n() == m());
matrix b = *this;
b.echelonize();
base res = 1;
for(size_t i = 0; i < n(); i++) {
res *= b[i][i];
}
return res;
}
std::pair<base, matrix> inv() const {
assert(n() == m());
matrix b = *this | eye(n());
if(size(b.echelonize<reverse>(n())[0]) < n()) {
return {0, {}};
}
base det = 1;
for(size_t i = 0; i < n(); i++) {
det *= b[i][i];
b[i] *= base(1) / b[i][i];
}
return {det, b.submatrix(std::views::all, std::views::drop(n()))};
}
// Can also just run gauss on T() | eye(m)
// but it would be slower :(
auto kernel() const {
auto A = *this;
auto [pivots, free] = A.template echelonize<reverse>();
matrix sols(size(free), m());
for(size_t j = 0; j < size(pivots); j++) {
base scale = base(1) / A[j][pivots[j]];
for(size_t i = 0; i < size(free); i++) {
sols[i][pivots[j]] = A[j][free[i]] * scale;
}
}
for(size_t i = 0; i < size(free); i++) {
sols[i][free[i]] = -1;
}
return sols;
}
// [solution, basis], transposed
std::optional<std::array<matrix, 2>> solve(matrix t) const {
matrix sols = (*this | t).kernel();
if(sols.n() < t.m() || matrix(sols.submatrix(
std::views::drop(sols.n() - t.m()),
std::views::drop(m())
)) != -eye(t.m())) {
return std::nullopt;
} else {
return std::array{
matrix(sols.submatrix(std::views::drop(sols.n() - t.m()), std::views::take(m()))),
matrix(sols.submatrix(std::views::take(sols.n() - t.m()), std::views::take(m())))
};
}
}
// To be called after a gaussian elimination run
// Sorts rows by pivots and classifies
// variables into pivots and free
auto sort_classify(size_t lim) {
size_t rk = 0;
std::vector<size_t> free, pivots;
for(size_t j = 0; j < lim; j++) {
for(size_t i = rk + 1; i < n() && row(rk)[j] == base(0); i++) {
if(row(i)[j] != base(0)) {
std::swap(row(i), row(rk));
row(rk) = -row(rk);
}
}
if(rk < n() && row(rk)[j] != base(0)) {
pivots.push_back(j);
rk++;
} else {
free.push_back(j);
}
}
return std::array{pivots, free};
}
};
template<typename base_t>
auto operator *(base_t t, matrix<base_t> const& A) {return A * t;}
}