CP-Algorithms Library

This documentation is automatically generated by competitive-verifier/competitive-verifier

View the Project on GitHub cp-algorithms/cp-algorithms-aux

:heavy_check_mark: cp-algo/math/decimal.hpp

Depends on

Verified with

Code

#ifndef CP_ALGO_MATH_DECIMAL_HPP
#define CP_ALGO_MATH_DECIMAL_HPP
#include "bigint.hpp"
#include <utility>

namespace cp_algo::math {
    template<base_v base = x10>
    struct decimal {
        bigint<base> value;
        int64_t scale; // value * base^scale

        decimal(int64_t v=0, int64_t s=0): value(bigint<base>(v)), scale(s) {}
        decimal(bigint<base> v, int64_t s=0): value(v), scale(s) {}

        decimal& operator *= (const decimal &other) {
            value *= other.value;
            scale += other.scale;
            return *this;
        }
        decimal& operator += (decimal const& other) {
            if (scale < other.scale) {
                value += other.value.pad(other.scale - scale);
            } else {
                value.pad_inplace(scale - other.scale);
                value += other.value;
                scale = other.scale;
            }
            return *this;
        }
        decimal& operator -= (decimal const& other) {
            if (scale < other.scale) {
                value -= other.value.pad(other.scale - scale);
            } else {
                value.pad_inplace(scale - other.scale);
                value -= other.value;
                scale = other.scale;
            }
            return *this;
        }
        decimal operator * (const decimal &other) const {
            return decimal(*this) *= other;
        }
        decimal operator + (const decimal &other) const {
            return decimal(*this) += other;
        }
        decimal operator - (const decimal &other) const {
            return decimal(*this) -= other;
        }
        auto split() const {
            auto int_part = scale >= -ssize(value.digits) ? value.top(ssize(value.digits) + scale) : bigint<base>(0);
            auto frac_part = *this - decimal(int_part);
            return std::pair{int_part, frac_part};
        }
        void print() {
            auto [int_part, frac_part] = split();
            print_bigint(std::cout, int_part);
            if (frac_part.value != bigint<base>(0)) {
                std::cout << '.';
                std::cout << std::string(bigint<base>::digit_length * (-frac_part.magnitude()), '0');
                frac_part.value.negative = false;
                print_bigint<true>(std::cout, frac_part.value);
            }
            std::cout << std::endl;
        }
        bigint<base> trunc() const {
            if (scale >= 0) {
                return value.pad(scale);
            } else if (-scale >= ssize(value.digits)) {
                return 0;
            } else {
                return value.top(ssize(value.digits) + scale);
            }
        }
        bigint<base> round() const {
            if (scale >= 0) {
                return value.pad(scale);
            } else if (-scale > ssize(value.digits)) {
                return 0;
            } else {
                auto res = value.top(ssize(value.digits) + scale);
                if (value.digits[-scale - 1] * 2 >= bigint<base>::Base) {
                    res += 1;
                }
                return res;
            }
        }
        decimal trunc(size_t digits) const {
            digits = std::min(digits, size(value.digits));
            return decimal(
                value.top(digits),
                scale + ssize(value.digits) - digits
            );
        }
        auto magnitude() const {
            static constexpr int64_t inf = 1e18;
            if (value.digits.empty()) return -inf;
            return ssize(value.digits) + scale;
        }
        decimal inv(int64_t precision) {
            assert(precision >= 0);
            int64_t lead = llround((double)bigint<base>::Base / (double)value.digits.back());
            decimal d(bigint<base>(lead), -ssize(value.digits));
            size_t cur = 2;
            decimal amend = decimal(1) - trunc(cur) * d;
            while(-amend.magnitude() < precision) {
                d += d * amend;
                cur = 2 * (1 - amend.magnitude());
                d = d.trunc(cur);
                amend = decimal(1) - trunc(cur) * d;
            }
            return d;
        }
    };

    template<base_v base>
    auto divmod_fast(bigint<base> const& a, int64_t b) {
        // Optimized divmod for small divisors that fit in int64_t
        if (b == 0) {
            assert(false && "Division by zero");
        }
        bool neg_a = a.negative;
        bool neg_b = b < 0;
        b = std::abs(b);
        
        bigint<base> quotient;
        uint64_t remainder = 0;

        auto n = ssize(a.digits);
        for (auto i = n - 1; i >= 0; i--) {
            __uint128_t val = (__uint128_t)remainder * bigint<base>::Base + a.digits[i];
            uint64_t q = uint64_t(val / b);
            remainder = uint64_t(val % b);
            quotient.digits.push_back(q);
        }
        std::ranges::reverse(quotient.digits);
        quotient.negative = (neg_a ^ neg_b);
        quotient.normalize();
        
        bigint<base> rem{int64_t(remainder)};
        rem.negative = neg_a;
        
        return std::pair{quotient, rem};
    }

    template<base_v base>
    auto divmod(bigint<base> const& a, bigint<base> const& b) {
        if (a < b) {
            return std::pair{bigint<base>(0), a};
        }
        // Use fast path if b fits in int64_t
        if (size(b.digits) == 1) {
            int64_t b_val = b.negative ? -int64_t(b.digits[0]) : int64_t(b.digits[0]);
            return divmod_fast(a, b_val);
        }
        // General case using decimal arithmetic
        auto A = decimal<base>(a);
        auto B = decimal<base>(b);
        auto d = (A * B.inv(A.magnitude() - B.magnitude() + 1)).round();
        auto r = a - d * b;
        if (r >= b) {
            d += 1;
            r -= b;
        }
        if (r < bigint<base>(0)) {
            d -= 1;
            r += b;
        }
        return std::pair{d, r};
    }
}

#endif // CP_ALGO_MATH_DECIMAL_HPP
#line 1 "cp-algo/math/decimal.hpp"


#line 1 "cp-algo/math/bigint.hpp"


#line 1 "cp-algo/util/big_alloc.hpp"



#include <set>
#include <map>
#include <deque>
#include <stack>
#include <queue>
#include <vector>
#include <string>
#include <cstddef>
#include <iostream>
#include <generator>
#include <forward_list>

// Single macro to detect POSIX platforms (Linux, Unix, macOS)
#if defined(__linux__) || defined(__unix__) || (defined(__APPLE__) && defined(__MACH__))
#  define CP_ALGO_USE_MMAP 1
#  include <sys/mman.h>
#else
#  define CP_ALGO_USE_MMAP 0
#endif

namespace cp_algo {
    template <typename T, size_t Align = 32>
    class big_alloc {
        static_assert( Align >= alignof(void*), "Align must be at least pointer-size");
        static_assert(std::popcount(Align) == 1, "Align must be a power of two");
    public:
        using value_type = T;
        template <class U> struct rebind { using other = big_alloc<U, Align>; };
        constexpr bool operator==(const big_alloc&) const = default;
        constexpr bool operator!=(const big_alloc&) const = default;

        big_alloc() noexcept = default;
        template <typename U, std::size_t A>
        big_alloc(const big_alloc<U, A>&) noexcept {}

        [[nodiscard]] T* allocate(std::size_t n) {
            std::size_t padded = round_up(n * sizeof(T));
            std::size_t align = std::max<std::size_t>(alignof(T),  Align);
#if CP_ALGO_USE_MMAP
            if (padded >= MEGABYTE) {
                void* raw = mmap(nullptr, padded,
                                PROT_READ | PROT_WRITE,
                                MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
                madvise(raw, padded, MADV_HUGEPAGE);
                madvise(raw, padded, MADV_POPULATE_WRITE);
                return static_cast<T*>(raw);
            }
#endif
            return static_cast<T*>(::operator new(padded, std::align_val_t(align)));
        }

        void deallocate(T* p, std::size_t n) noexcept {
            if (!p) return;
            std::size_t padded = round_up(n * sizeof(T));
            std::size_t align  = std::max<std::size_t>(alignof(T),  Align);
    #if CP_ALGO_USE_MMAP
            if (padded >= MEGABYTE) { munmap(p, padded); return; }
    #endif
            ::operator delete(p, padded, std::align_val_t(align));
        }

    private:
        static constexpr std::size_t MEGABYTE = 1 << 20;
        static constexpr std::size_t round_up(std::size_t x) noexcept {
            return (x + Align - 1) / Align * Align;
        }
    };

    template<typename T> using big_vector = std::vector<T, big_alloc<T>>;
    template<typename T> using big_basic_string = std::basic_string<T, std::char_traits<T>, big_alloc<T>>;
    template<typename T> using big_deque = std::deque<T, big_alloc<T>>;
    template<typename T> using big_stack = std::stack<T, big_deque<T>>;
    template<typename T> using big_queue = std::queue<T, big_deque<T>>;
    template<typename T> using big_priority_queue = std::priority_queue<T, big_vector<T>>;
    template<typename T> using big_forward_list = std::forward_list<T, big_alloc<T>>;
    using big_string = big_basic_string<char>;

    template<typename Key, typename Value, typename Compare = std::less<Key>>
    using big_map = std::map<Key, Value, Compare, big_alloc<std::pair<const Key, Value>>>;
    template<typename T, typename Compare = std::less<T>>
    using big_multiset = std::multiset<T, Compare, big_alloc<T>>;
    template<typename T, typename Compare = std::less<T>>
    using big_set = std::set<T, Compare, big_alloc<T>>;
    template<typename Ref, typename V = void>

    using big_generator = std::generator<Ref, V, big_alloc<std::byte>>;
}

// Deduction guide to make elements_of with big_generator default to big_alloc
namespace std::ranges {
    template<typename Ref, typename V>
    elements_of(cp_algo::big_generator<Ref, V>&&) -> elements_of<cp_algo::big_generator<Ref, V>&&, cp_algo::big_alloc<std::byte>>;
}


#line 1 "cp-algo/math/fft_simple.hpp"


#line 1 "cp-algo/random/rng.hpp"


#include <chrono>
#include <random>
namespace cp_algo::random {
    std::mt19937_64 gen(
        std::chrono::steady_clock::now().time_since_epoch().count()
    );
    uint64_t rng() {
        return gen();
    }
}

#line 1 "cp-algo/math/common.hpp"


#include <functional>
#include <cstdint>
#include <cassert>
namespace cp_algo::math {
#ifdef CP_ALGO_MAXN
    const int maxn = CP_ALGO_MAXN;
#else
    const int maxn = 1 << 19;
#endif
    const int magic = 64; // threshold for sizes to run the naive algo

    auto bpow(auto const& x, auto n, auto const& one, auto op) {
        if(n == 0) {
            return one;
        } else {
            auto t = bpow(x, n / 2, one, op);
            t = op(t, t);
            if(n % 2) {
                t = op(t, x);
            }
            return t;
        }
    }
    auto bpow(auto x, auto n, auto ans) {
        return bpow(x, n, ans, std::multiplies{});
    }
    template<typename T>
    T bpow(T const& x, auto n) {
        return bpow(x, n, T(1));
    }
    inline constexpr auto inv2(auto x) {
        assert(x % 2);
        std::make_unsigned_t<decltype(x)> y = 1;
        while(y * x != 1) {
            y *= 2 - x * y;
        }
        return y;
    }
}

#line 1 "cp-algo/math/cvector.hpp"


#line 1 "cp-algo/util/simd.hpp"


#include <experimental/simd>
#line 6 "cp-algo/util/simd.hpp"
#include <memory>

#if defined(__x86_64__) && !defined(CP_ALGO_DISABLE_AVX2)
#define CP_ALGO_SIMD_AVX2_TARGET _Pragma("GCC target(\"avx2\")")
#else
#define CP_ALGO_SIMD_AVX2_TARGET
#endif

#define CP_ALGO_SIMD_PRAGMA_PUSH \
    _Pragma("GCC push_options") \
    CP_ALGO_SIMD_AVX2_TARGET

CP_ALGO_SIMD_PRAGMA_PUSH
namespace cp_algo {
    template<typename T, size_t len>
    using simd [[gnu::vector_size(len * sizeof(T))]] = T;
    using u64x8 = simd<uint64_t, 8>;
    using u32x16 = simd<uint32_t, 16>;
    using i64x4 = simd<int64_t, 4>;
    using u64x4 = simd<uint64_t, 4>;
    using u32x8 = simd<uint32_t, 8>;
    using u16x16 = simd<uint16_t, 16>;
    using i32x4 = simd<int32_t, 4>;
    using u32x4 = simd<uint32_t, 4>;
    using u16x8 = simd<uint16_t, 8>;
    using u16x4 = simd<uint16_t, 4>;
    using i16x4 = simd<int16_t, 4>;
    using u8x32 = simd<uint8_t, 32>;
    using u8x8 = simd<uint8_t, 8>;
    using u8x4 = simd<uint8_t, 4>;
    using dx4 = simd<double, 4>;

    inline dx4 abs(dx4 a) {
        return dx4{
            std::abs(a[0]),
            std::abs(a[1]),
            std::abs(a[2]),
            std::abs(a[3])
        };
    }

    // https://stackoverflow.com/a/77376595
    // works for ints in (-2^51, 2^51)
    static constexpr dx4 magic = dx4() + (3ULL << 51);
    inline i64x4 lround(dx4 x) {
        return i64x4(x + magic) - i64x4(magic);
    }
    inline dx4 to_double(i64x4 x) {
        return dx4(x + i64x4(magic)) - magic;
    }

    inline dx4 round(dx4 a) {
        return dx4{
            std::nearbyint(a[0]),
            std::nearbyint(a[1]),
            std::nearbyint(a[2]),
            std::nearbyint(a[3])
        };
    }

    inline u64x4 low32(u64x4 x) {
        return x & uint32_t(-1);
    }
    inline auto swap_bytes(auto x) {
        return decltype(x)(__builtin_shufflevector(u32x8(x), u32x8(x), 1, 0, 3, 2, 5, 4, 7, 6));
    }
    inline u64x4 montgomery_reduce(u64x4 x, uint32_t mod, uint32_t imod) {
#ifdef __AVX2__
        auto x_ninv = u64x4(_mm256_mul_epu32(__m256i(x), __m256i() + imod));
        x += u64x4(_mm256_mul_epu32(__m256i(x_ninv), __m256i() + mod));
#else
        auto x_ninv = u64x4(u32x8(low32(x)) * imod);
        x += x_ninv * uint64_t(mod);
#endif
        return swap_bytes(x);
    }

    inline u64x4 montgomery_mul(u64x4 x, u64x4 y, uint32_t mod, uint32_t imod) {
#ifdef __AVX2__
        return montgomery_reduce(u64x4(_mm256_mul_epu32(__m256i(x), __m256i(y))), mod, imod);
#else
        return montgomery_reduce(x * y, mod, imod);
#endif
    }
    inline u32x8 montgomery_mul(u32x8 x, u32x8 y, uint32_t mod, uint32_t imod) {
        return u32x8(montgomery_mul(u64x4(x), u64x4(y), mod, imod)) |
               u32x8(swap_bytes(montgomery_mul(u64x4(swap_bytes(x)), u64x4(swap_bytes(y)), mod, imod)));
    }
    inline dx4 rotate_right(dx4 x) {
        static constexpr u64x4 shuffler = {3, 0, 1, 2};
        return __builtin_shuffle(x, shuffler);
    }

    template<std::size_t Align = 32>
    inline bool is_aligned(const auto* p) noexcept {
        return (reinterpret_cast<std::uintptr_t>(p) % Align) == 0;
    }

    template<class Target>
    inline Target& vector_cast(auto &&p) {
        return *reinterpret_cast<Target*>(std::assume_aligned<alignof(Target)>(&p));
    }
}
#pragma GCC pop_options

#line 1 "cp-algo/util/complex.hpp"


#line 4 "cp-algo/util/complex.hpp"
#include <cmath>
#include <type_traits>
#line 7 "cp-algo/util/complex.hpp"
CP_ALGO_SIMD_PRAGMA_PUSH
namespace cp_algo {
    // Custom implementation, since std::complex is UB on non-floating types
    template<typename T>
    struct complex {
        using value_type = T;
        T x, y;
        inline constexpr complex(): x(), y() {}
        inline constexpr complex(T const& x): x(x), y() {}
        inline constexpr complex(T const& x, T const& y): x(x), y(y) {}
        inline complex& operator *= (T const& t) {x *= t; y *= t; return *this;}
        inline complex& operator /= (T const& t) {x /= t; y /= t; return *this;}
        inline complex operator * (T const& t) const {return complex(*this) *= t;}
        inline complex operator / (T const& t) const {return complex(*this) /= t;}
        inline complex& operator += (complex const& t) {x += t.x; y += t.y; return *this;}
        inline complex& operator -= (complex const& t) {x -= t.x; y -= t.y; return *this;}
        inline complex operator * (complex const& t) const {return {x * t.x - y * t.y, x * t.y + y * t.x};}
        inline complex operator / (complex const& t) const {return *this * t.conj() / t.norm();}
        inline complex operator + (complex const& t) const {return complex(*this) += t;}
        inline complex operator - (complex const& t) const {return complex(*this) -= t;}
        inline complex& operator *= (complex const& t) {return *this = *this * t;}
        inline complex& operator /= (complex const& t) {return *this = *this / t;}
        inline complex operator - () const {return {-x, -y};}
        inline complex conj() const {return {x, -y};}
        inline T norm() const {return x * x + y * y;}
        inline T abs() const {return std::sqrt(norm());}
        inline T const real() const {return x;}
        inline T const imag() const {return y;}
        inline T& real() {return x;}
        inline T& imag() {return y;}
        inline static constexpr complex polar(T r, T theta) {return {T(r * cos(theta)), T(r * sin(theta))};}
        inline auto operator <=> (complex const& t) const = default;
    };
    template<typename T> inline complex<T> conj(complex<T> const& x) {return x.conj();}
    template<typename T> inline T norm(complex<T> const& x) {return x.norm();}
    template<typename T> inline T abs(complex<T> const& x) {return x.abs();}
    template<typename T> inline T& real(complex<T> &x) {return x.real();}
    template<typename T> inline T& imag(complex<T> &x) {return x.imag();}
    template<typename T> inline T const real(complex<T> const& x) {return x.real();}
    template<typename T> inline T const imag(complex<T> const& x) {return x.imag();}
    template<typename T>
    inline constexpr complex<T> polar(T r, T theta) {
        return complex<T>::polar(r, theta);
    }
    template<typename T>
    inline std::ostream& operator << (std::ostream &out, complex<T> const& x) {
        return out << x.real() << ' ' << x.imag();
    }
}
#pragma GCC pop_options

#line 1 "cp-algo/util/checkpoint.hpp"


#line 8 "cp-algo/util/checkpoint.hpp"
namespace cp_algo {
#ifdef CP_ALGO_CHECKPOINT
    big_map<big_string, double> checkpoints;
    double last;
#endif
    template<bool final = false>
    void checkpoint([[maybe_unused]] auto const& _msg) {
#ifdef CP_ALGO_CHECKPOINT
        big_string msg = _msg;
        double now = (double)clock() / CLOCKS_PER_SEC;
        double delta = now - last;
        last = now;
        if(msg.size() && !final) {
            checkpoints[msg] += delta;
        }
        if(final) {
            for(auto const& [key, value] : checkpoints) {
                std::cerr << key << ": " << value * 1000 << " ms\n";
            }
            std::cerr << "Total: " << now * 1000 << " ms\n";
        }
#endif
    }
    template<bool final = false>
    void checkpoint() {
        checkpoint<final>("");
    }
}

#line 7 "cp-algo/math/cvector.hpp"
#include <ranges>
#include <bit>
CP_ALGO_SIMD_PRAGMA_PUSH
namespace stdx = std::experimental;
namespace cp_algo::math::fft {
    static constexpr size_t flen = 4;
    using ftype = double;
    using vftype = dx4;
    using point = complex<ftype>;
    using vpoint = complex<vftype>;
    static constexpr vftype vz = {};
    vpoint vi(vpoint const& r) {
        return {-imag(r), real(r)};
    }

    struct cvector {
        big_vector<vpoint> r;
        cvector(size_t n) {
            n = std::max(flen, std::bit_ceil(n));
            r.resize(n / flen);
            checkpoint("cvector create");
        }

        vpoint& at(size_t k) {return r[k / flen];}
        vpoint at(size_t k) const {return r[k / flen];}
        template<class pt = point>
        inline void set(size_t k, pt const& t) {
            if constexpr(std::is_same_v<pt, point>) {
                real(r[k / flen])[k % flen] = real(t);
                imag(r[k / flen])[k % flen] = imag(t);
            } else {
                at(k) = t;
            }
        }
        template<class pt = point>
        inline pt get(size_t k) const {
            if constexpr(std::is_same_v<pt, point>) {
                return {real(r[k / flen])[k % flen], imag(r[k / flen])[k % flen]};
            } else {
                return at(k);
            }
        }

        size_t size() const {
            return flen * r.size();
        }
        static constexpr size_t eval_arg(size_t n) {
            if(n < pre_evals) {
                return eval_args[n];
            } else {
                return eval_arg(n / 2) | (n & 1) << (std::bit_width(n) - 1);
            }
        }
        static constexpr point eval_point(size_t n) {
            if(n % 2) {
                return -eval_point(n - 1);
            } else if(n % 4) {
                return eval_point(n - 2) * point(0, 1);
            } else if(n / 4 < pre_evals) {
                return evalp[n / 4];
            } else {
                return polar<ftype>(1., std::numbers::pi / (ftype)std::bit_floor(n) * (ftype)eval_arg(n));
            }
        }
        static constexpr std::array<point, 32> roots = []() {
            std::array<point, 32> res;
            for(size_t i = 2; i < 32; i++) {
                res[i] = polar<ftype>(1., std::numbers::pi / (1ull << (i - 2)));
            }
            return res;
        }();
        static constexpr point root(size_t n) {
            return roots[std::bit_width(n)];
        }
        template<int step>
        static void exec_on_eval(size_t n, size_t k, auto &&callback) {
            callback(k, root(4 * step * n) * eval_point(step * k));
        }
        template<int step>
        static void exec_on_evals(size_t n, auto &&callback) {
            point factor = root(4 * step * n);
            for(size_t i = 0; i < n; i++) {
                callback(i, factor * eval_point(step * i));
            }
        }

        static void do_dot_iter(point rt, vpoint& Bv, vpoint const& Av, vpoint& res) {
            res += Av * Bv;
            real(Bv) = rotate_right(real(Bv));
            imag(Bv) = rotate_right(imag(Bv));
            auto x = real(Bv)[0], y = imag(Bv)[0];
            real(Bv)[0] = x * real(rt) - y * imag(rt);
            imag(Bv)[0] = x * imag(rt) + y * real(rt);
        }

        void dot(cvector const& t) {
            size_t n = this->size();
            exec_on_evals<1>(n / flen, [&](size_t k, point rt) __attribute__((always_inline)) {
                k *= flen;
                auto [Ax, Ay] = at(k);
                auto Bv = t.at(k);
                vpoint res = vz;
                for (size_t i = 0; i < flen; i++) {
                    vpoint Av = vpoint(vz + Ax[i], vz + Ay[i]);
                    do_dot_iter(rt, Bv, Av, res);
                }
                set(k, res);
            });
            checkpoint("dot");
        }
        template<bool partial = true>
        void ifft() {
            size_t n = size();
            if constexpr (!partial) {
                point pi(0, 1);
                exec_on_evals<4>(n / 4, [&](size_t k, point rt) __attribute__((always_inline)) {
                    k *= 4;
                    point v1 = conj(rt);
                    point v2 = v1 * v1;
                    point v3 = v1 * v2;
                    auto A = get(k);
                    auto B = get(k + 1);
                    auto C = get(k + 2);
                    auto D = get(k + 3);
                    set(k, (A + B) + (C + D));
                    set(k + 2, ((A + B) - (C + D)) * v2);
                    set(k + 1, ((A - B) - pi * (C - D)) * v1);
                    set(k + 3, ((A - B) + pi * (C - D)) * v3);
                });
            }
            bool parity = std::countr_zero(n) % 2;
            if(parity) {
                exec_on_evals<2>(n / (2 * flen), [&](size_t k, point rt) __attribute__((always_inline)) {
                    k *= 2 * flen;
                    vpoint cvrt = {vz + real(rt), vz - imag(rt)};
                    auto B = at(k) - at(k + flen);
                    at(k) += at(k + flen);
                    at(k + flen) = B * cvrt;
                });
            }

            for(size_t leaf = 3 * flen; leaf < n; leaf += 4 * flen) {
                size_t level = std::countr_one(leaf + 3);
                for(size_t lvl = 4 + parity; lvl <= level; lvl += 2) {
                    size_t i = (1 << lvl) / 4;
                    exec_on_eval<4>(n >> lvl, leaf >> lvl, [&](size_t k, point rt) __attribute__((always_inline)) {
                        k <<= lvl;
                        vpoint v1 = {vz + real(rt), vz - imag(rt)};
                        vpoint v2 = v1 * v1;
                        vpoint v3 = v1 * v2;
                        for(size_t j = k; j < k + i; j += flen) {
                            auto A = at(j);
                            auto B = at(j + i);
                            auto C = at(j + 2 * i);
                            auto D = at(j + 3 * i);
                            at(j) = ((A + B) + (C + D));
                            at(j + 2 * i) = ((A + B) - (C + D)) * v2;
                            at(j +     i) = ((A - B) - vi(C - D)) * v1;
                            at(j + 3 * i) = ((A - B) + vi(C - D)) * v3;
                        }
                    });
                }
            }
            checkpoint("ifft");
            for(size_t k = 0; k < n; k += flen) {
                if constexpr (partial) {
                    set(k, get<vpoint>(k) /= vz + ftype(n / flen));
                } else {
                    set(k, get<vpoint>(k) /= vz + ftype(n));
                }
            }
        }
        template<bool partial = true>
        void fft() {
            size_t n = size();
            bool parity = std::countr_zero(n) % 2;
            for(size_t leaf = 0; leaf < n; leaf += 4 * flen) {
                size_t level = std::countr_zero(n + leaf);
                level -= level % 2 != parity;
                for(size_t lvl = level; lvl >= 4; lvl -= 2) {
                    size_t i = (1 << lvl) / 4;
                    exec_on_eval<4>(n >> lvl, leaf >> lvl, [&](size_t k, point rt) __attribute__((always_inline)) {
                        k <<= lvl;
                        vpoint v1 = {vz + real(rt), vz + imag(rt)};
                        vpoint v2 = v1 * v1;
                        vpoint v3 = v1 * v2;
                        for(size_t j = k; j < k + i; j += flen) {
                            auto A = at(j);
                            auto B = at(j + i) * v1;
                            auto C = at(j + 2 * i) * v2;
                            auto D = at(j + 3 * i) * v3;
                            at(j)         = (A + C) + (B + D);
                            at(j + i)     = (A + C) - (B + D);
                            at(j + 2 * i) = (A - C) + vi(B - D);
                            at(j + 3 * i) = (A - C) - vi(B - D);
                        }
                    });
                }
            }
            if(parity) {
                exec_on_evals<2>(n / (2 * flen), [&](size_t k, point rt) __attribute__((always_inline)) {
                    k *= 2 * flen;
                    vpoint vrt = {vz + real(rt), vz + imag(rt)};
                    auto t = at(k + flen) * vrt;
                    at(k + flen) = at(k) - t;
                    at(k) += t;
                });
            }
            if constexpr (!partial) {
                point pi(0, 1);
                exec_on_evals<4>(n / 4, [&](size_t k, point rt) __attribute__((always_inline)) {
                    k *= 4;
                    point v1 = rt;
                    point v2 = v1 * v1;
                    point v3 = v1 * v2;
                    auto A = get(k);
                    auto B = get(k + 1) * v1;
                    auto C = get(k + 2) * v2;
                    auto D = get(k + 3) * v3;
                    set(k, (A + C) + (B + D));
                    set(k + 1, (A + C) - (B + D));
                    set(k + 2, (A - C) + pi * (B - D));
                    set(k + 3, (A - C) - pi * (B - D));
                });
            }
            checkpoint("fft");
        }
        static constexpr size_t pre_evals = 1 << 16;
        static const std::array<size_t, pre_evals> eval_args;
        static const std::array<point, pre_evals> evalp;
    };

    const std::array<size_t, cvector::pre_evals> cvector::eval_args = []() {
        std::array<size_t, pre_evals> res = {};
        for(size_t i = 1; i < pre_evals; i++) {
            res[i] = res[i >> 1] | (i & 1) << (std::bit_width(i) - 1);
        }
        return res;
    }();
    const std::array<point, cvector::pre_evals> cvector::evalp = []() {
        std::array<point, pre_evals> res = {};
        res[0] = 1;
        for(size_t n = 1; n < pre_evals; n++) {
            res[n] = polar<ftype>(1., std::numbers::pi * ftype(eval_args[n]) / ftype(4 * std::bit_floor(n)));
        }
        return res;
    }();
}
#pragma GCC pop_options

#line 6 "cp-algo/math/fft_simple.hpp"
CP_ALGO_SIMD_PRAGMA_PUSH
namespace cp_algo::math::fft {
    struct dft_simple {
        cp_algo::math::fft::cvector cv;

        dft_simple(auto const& a, size_t n): cv(n) {
            for(size_t i = 0; i < std::min(std::size(a), n); i++) {
                real(cv.at(i))[i % 4] = ftype(a[i]);
                imag(cv.at(i))[i % 4] = ftype(i + n < std::size(a) ? a[i + n] : 0);
            }
            checkpoint("dft64 init");
            cv.fft();
        }

        void dot(dft_simple const& t) {
            cv.dot(t.cv);
        }

        void recover_mod(auto &res, size_t k) {
            cv.ifft();
            size_t n = cv.size();
            for(size_t i = 0; i < std::min(k, n); i++) {
                res[i] = llround(real(cv.get(i)));
            }
            for(size_t i = n; i < k; i++) {
                res[i] = llround(imag(cv.get(i - n)));
            }
            cp_algo::checkpoint("recover mod");
        }
    };

    // Multiplies a and b, assuming perfect precision and no overflow
    void conv_simple(auto& a, auto const& b) {
        if (empty(a) || empty(b)) {
            a.clear();
            return;
        }
        size_t n = a.size(), m = b.size();
        size_t N = std::max(flen, std::bit_ceil(n + m - 1) / 2);
        dft_simple A(a, N), B(b, N);
        A.dot(B);
        a.resize(n + m - 1);
        A.recover_mod(a, n + m - 1);
    }
}
#pragma GCC pop_options

#line 5 "cp-algo/math/bigint.hpp"
#include <bits/stdc++.h>

namespace cp_algo::math {
    enum base_v {
        x10 = uint64_t(1e16),
        x16 = uint64_t(1ull << 60)
    };
    template<base_v base = x10>
    struct bigint {
        static constexpr uint64_t Base = uint64_t(base);
        static constexpr uint16_t digit_length = base == x10 ? 16 : 15;
        static constexpr uint16_t sub_base = base == x10 ? 10 : 16;
        static constexpr uint32_t meta_base = base == x10 ? uint32_t(1e4) : uint32_t(1 << 15);
        big_basic_string<uint64_t> digits;
        bool negative;

        auto operator <=> (bigint const& other) const {
            // Handle zero cases
            if (digits.empty() && other.digits.empty()) {
                return std::strong_ordering::equal;
            }
            if (digits.empty()) {
                return other.negative ? std::strong_ordering::greater : std::strong_ordering::less;
            }
            if (other.digits.empty()) {
                return negative ? std::strong_ordering::less : std::strong_ordering::greater;
            }
            
            // Handle sign differences
            if (negative != other.negative) {
                return negative ? std::strong_ordering::less : std::strong_ordering::greater;
            }
            
            // Both have the same sign - compare magnitudes
            if (digits.size() != other.digits.size()) {
                auto size_cmp = digits.size() <=> other.digits.size();
                // If both negative, reverse the comparison
                return negative ? 0 <=> size_cmp : size_cmp;
            }
            
            // Same size, compare digits from most significant to least
            for (auto i = ssize(digits) - 1; i >= 0; i--) {
                auto digit_cmp = digits[i] <=> other.digits[i];
                if (digit_cmp != std::strong_ordering::equal) {
                    return negative ? 0 <=> digit_cmp : digit_cmp;
                }
            }
            
            return std::strong_ordering::equal;
        }

        bigint() {}

        bigint(big_basic_string<uint64_t> d, bool neg): digits(std::move(d)), negative(neg) {
            normalize();
        }

        bigint& pad_inplace(size_t to_add) {
            digits.insert(0, to_add, 0);
            return normalize();
        }
        bigint& drop_inplace(size_t to_drop) {
            digits.erase(0, std::min(to_drop, size(digits)));
            return normalize();
        }
        bigint& take_inplace(size_t to_keep) {
            digits.erase(std::min(to_keep, size(digits)), std::string::npos);
            return normalize();
        }
        bigint& top_inplace(size_t to_keep) {
            if (to_keep >= size(digits)) {
                return pad_inplace(to_keep - size(digits));
            } else {
                return drop_inplace(size(digits) - to_keep);
            }
        }
        bigint pad(size_t to_add) const {
            return bigint{big_basic_string<uint64_t>(to_add, 0) + digits, negative}.normalize();
        }
        bigint drop(size_t to_drop) const {
            return bigint{digits.substr(std::min(to_drop, size(digits))), negative}.normalize();
        }
        bigint take(size_t to_keep) const {
            return bigint{digits.substr(0, std::min(to_keep, size(digits))), negative}.normalize();
        }
        bigint top(size_t to_keep) const {
            if (to_keep >= size(digits)) {
                return pad(to_keep - size(digits));
            } else {
                return drop(size(digits) - to_keep);
            }
        }

        bigint& normalize() {
            while (!empty(digits) && digits.back() == 0) {
                digits.pop_back();
            }
            if (digits.empty()) {
                negative = false;
            }
            return *this;
        }
        bigint& negate() {
            negative ^= 1;
            return *this;
        }
        bigint operator -() {
            return bigint(*this).negate();
        }
        bigint& operator -= (const bigint& other) {
            if (negative != other.negative) {
                return (negate() += other).negate().normalize();
            }
            digits.resize(std::max(size(digits), size(other.digits)));
            bool carry = false;
            auto d_ptr = std::assume_aligned<32>(digits.data());
            auto o_ptr = std::assume_aligned<32>(other.digits.data());
            size_t N = size(other.digits);
            size_t i = 0;
            for (; i < N; i++) {
                d_ptr[i] -= o_ptr[i] + carry;
                carry = d_ptr[i] >= base;
                d_ptr[i] += carry ? uint64_t(base) : 0;
            }
            if (carry) {
                N = size(digits);   
                for (; i < N && d_ptr[i] == 0; i++) {
                    d_ptr[i] = base - 1;
                }
                if (i < N) {
                    d_ptr[i]--;
                } else {
                    // Two's complement: flip all digits then add 1
                    for (i = 0; i < N; i++) {
                        d_ptr[i] = base - d_ptr[i] - 1;
                    }
                    bool carry = true;
                    for (i = 0; i < N && carry; i++) {
                        d_ptr[i]++;
                        carry = d_ptr[i] >= base;
                        d_ptr[i] -= carry * base;
                    }
                    negate();
                }
            }
            return normalize();
        }
        bigint& operator += (const bigint& other) {
            if (negative != other.negative) {
                return (negate() -= other).negate().normalize();
            }
            digits.resize(std::max(size(digits), size(other.digits)));
            bool carry = false;
            auto d_ptr = std::assume_aligned<32>(digits.data());
            auto o_ptr = std::assume_aligned<32>(other.digits.data());
            size_t N = size(other.digits);
            size_t i = 0;
            for (; i < N; i++) {
                d_ptr[i] += o_ptr[i] + carry;
                carry = d_ptr[i] >= base;
                d_ptr[i] -= carry ? uint64_t(base) : 0;
            }
            if (carry) {
                N = size(digits);
                for (; i < N && d_ptr[i] == uint64_t(base) - 1; i++) {
                    d_ptr[i] = 0;
                }
                if (i < N) {
                    d_ptr[i]++;
                } else {
                    digits.push_back(1);
                }
            }
            return *this;
        }
        bigint(int64_t x) {
            negative = x < 0;
            x = negative ? -x : x;
            digits = x ? big_basic_string<uint64_t>{uint64_t(x)} : big_basic_string<uint64_t>{};
        }
        bigint(std::span<char> s): negative(false) {
            if (size(s) < digit_length) {
                int64_t val = 0;
                std::from_chars(s.data(), s.data() + size(s), val, sub_base);
                *this = bigint(val);
                return;
            }
            if (!empty(s) && s[0] == '-') {
                negative = true;
                s = s.subspan(1);
            }
            size_t len = size(s);
            assert(len > 0);
            size_t num_digits = (len + digit_length - 1) / digit_length;
            digits.resize(num_digits);
            size_t i = len;
            for (size_t j = 0; j < num_digits - 1; j++) {
                std::from_chars(s.data() + i - digit_length, s.data() + i, digits[j], sub_base);
                i -= digit_length;
            }
            std::from_chars(s.data(), s.data() + i, digits.back(), sub_base);
            normalize();
        }

        bigint operator + (const bigint& other) const {
            return bigint(*this) += other;
        }
        bigint operator - (const bigint& other) const {
            return bigint(*this) -= other;
        }
        void to_metabase() {
            auto N = ssize(digits);
            digits.resize(4 * N);
            for (auto i = N - 1; i >= 0; i--) {
                uint64_t val = digits[i];
                digits[4 * i] = val % meta_base;
                val /= meta_base;
                digits[4 * i + 1] = val % meta_base;
                val /= meta_base;
                digits[4 * i + 2] = val % meta_base;
                val /= meta_base;
                digits[4 * i + 3] = val;
            }
        }
        void from_metabase() {
            auto N = (ssize(digits) + 3) / 4;
            digits.resize(4 * N);
            uint64_t carry = 0;
            for (int i = 0; i < N; i++) {
                __uint128_t val = digits[4 * i + 3];
                val = val * meta_base + digits[4 * i + 2];
                val = val * meta_base + digits[4 * i + 1];
                val = val * meta_base + digits[4 * i];
                val += carry;
                digits[i] = uint64_t(val % base);
                carry = uint64_t(val / base);
            }
            digits.resize(N);
            while (carry) {
                digits.push_back(carry % base);
                carry /= base;
            }
        }
        bigint& operator *= (int64_t other) {
            if (other < 0) {
                negative ^= 1;
                other = -other;
            }
            if (other == 0) {
                return *this = bigint(0);
            } else if (other == 1) {
                return *this;
            }
            uint64_t carry = 0;
            for (auto &d: digits) {
                __uint128_t val = __uint128_t(d) * other + carry;
                d = uint64_t(val % base);
                carry = uint64_t(val / base);
            }
            if (carry) {
                digits.push_back(carry % base);
                carry /= base;
            }
            return *this;
        }
        bigint operator * (int64_t other) const {
            return bigint(*this) *= other;
        }
        friend bigint operator * (int64_t lhs, const bigint& rhs) {
            return bigint(rhs) *= lhs;
        }
        bigint& mul_inplace(auto &&other) {
            negative ^= other.negative;
            auto n = size(digits), m = size(other.digits);
            if (n < m) {
                std::swap(n, m);
                std::swap(digits, other.digits);
            }
            if (m <= 1) {
                return *this *= int64_t(m == 0 ? 0 : other.digits[0]);
            }
            // Small m: use schoolbook long multiplication in base `Base`
            // Threshold chosen empirically to avoid FFT overhead on small sizes
            constexpr size_t SMALL_M_THRESHOLD = 32;
            if (m <= SMALL_M_THRESHOLD) {
                big_basic_string<uint64_t> res;
                res.assign(n + m, 0);
                for (size_t i = 0; i < n; i++) {
                    if (digits[i] == 0) continue;
                    uint64_t carry = 0;
                    for (size_t j = 0; j < m; j++) {
                        __uint128_t cur = res[i + j]
                                        + (__uint128_t)digits[i] * other.digits[j]
                                        + carry;
                        res[i + j] = uint64_t(cur % Base);
                        carry = uint64_t(cur / Base);
                    }
                    size_t k = i + m;
                    if (carry) {
                        uint64_t cur = res[k] + carry;
                        res[k] = cur % Base;
                        carry = cur / Base;
                        k++;
                    }
                }
                digits = std::move(res);
                return normalize();
            }
            to_metabase();
            other.to_metabase();
            fft::conv_simple(digits, other.digits);
            from_metabase();
            return normalize();
        }
        bigint& operator *= (bigint const& other) {
            return mul_inplace(bigint(other));
        }
        bigint operator * (const bigint& other) const {
            return bigint(*this).mul_inplace(bigint(other));
        }
    };

    template<base_v base>
    decltype(std::cin)& operator >> (decltype(std::cin) &in, cp_algo::math::bigint<base> &x) {
        std::string s;
        in >> s;
        x = {s};
        return in;
    }

    template<base_v base, bool fill = true>
    auto& print_digit(auto &out, uint64_t d) {
        char buf[16];
        auto [ptr, ec] = std::to_chars(buf, buf + sizeof(buf), d, bigint<base>::sub_base);
        if constexpr (base == x16) {
            std::ranges::transform(buf, buf, toupper);
        }
        auto len = ptr - buf;
        if constexpr (fill) {
            out << std::string(bigint<base>::digit_length - len, '0');
        }
        return out << std::string_view(buf, len);
    }

    template<bool fill_all = false, base_v base>
    auto& print_bigint(auto &out, cp_algo::math::bigint<base> const& x) {
        if (x.negative) {
            out << '-';
        }
        if (empty(x.digits)) {
            return print_digit<base, fill_all>(out, 0);
        }
        print_digit<base, fill_all>(out, x.digits.back());
        for (auto d: x.digits | std::views::reverse | std::views::drop(1)) {
            print_digit<base, true>(out, d);
        }
        return out;
    }

    template<base_v base>
    decltype(std::cout)& operator << (decltype(std::cout) &out, cp_algo::math::bigint<base> const& x) {
        return print_bigint(out, x);
    }
}


#line 5 "cp-algo/math/decimal.hpp"

namespace cp_algo::math {
    template<base_v base = x10>
    struct decimal {
        bigint<base> value;
        int64_t scale; // value * base^scale

        decimal(int64_t v=0, int64_t s=0): value(bigint<base>(v)), scale(s) {}
        decimal(bigint<base> v, int64_t s=0): value(v), scale(s) {}

        decimal& operator *= (const decimal &other) {
            value *= other.value;
            scale += other.scale;
            return *this;
        }
        decimal& operator += (decimal const& other) {
            if (scale < other.scale) {
                value += other.value.pad(other.scale - scale);
            } else {
                value.pad_inplace(scale - other.scale);
                value += other.value;
                scale = other.scale;
            }
            return *this;
        }
        decimal& operator -= (decimal const& other) {
            if (scale < other.scale) {
                value -= other.value.pad(other.scale - scale);
            } else {
                value.pad_inplace(scale - other.scale);
                value -= other.value;
                scale = other.scale;
            }
            return *this;
        }
        decimal operator * (const decimal &other) const {
            return decimal(*this) *= other;
        }
        decimal operator + (const decimal &other) const {
            return decimal(*this) += other;
        }
        decimal operator - (const decimal &other) const {
            return decimal(*this) -= other;
        }
        auto split() const {
            auto int_part = scale >= -ssize(value.digits) ? value.top(ssize(value.digits) + scale) : bigint<base>(0);
            auto frac_part = *this - decimal(int_part);
            return std::pair{int_part, frac_part};
        }
        void print() {
            auto [int_part, frac_part] = split();
            print_bigint(std::cout, int_part);
            if (frac_part.value != bigint<base>(0)) {
                std::cout << '.';
                std::cout << std::string(bigint<base>::digit_length * (-frac_part.magnitude()), '0');
                frac_part.value.negative = false;
                print_bigint<true>(std::cout, frac_part.value);
            }
            std::cout << std::endl;
        }
        bigint<base> trunc() const {
            if (scale >= 0) {
                return value.pad(scale);
            } else if (-scale >= ssize(value.digits)) {
                return 0;
            } else {
                return value.top(ssize(value.digits) + scale);
            }
        }
        bigint<base> round() const {
            if (scale >= 0) {
                return value.pad(scale);
            } else if (-scale > ssize(value.digits)) {
                return 0;
            } else {
                auto res = value.top(ssize(value.digits) + scale);
                if (value.digits[-scale - 1] * 2 >= bigint<base>::Base) {
                    res += 1;
                }
                return res;
            }
        }
        decimal trunc(size_t digits) const {
            digits = std::min(digits, size(value.digits));
            return decimal(
                value.top(digits),
                scale + ssize(value.digits) - digits
            );
        }
        auto magnitude() const {
            static constexpr int64_t inf = 1e18;
            if (value.digits.empty()) return -inf;
            return ssize(value.digits) + scale;
        }
        decimal inv(int64_t precision) {
            assert(precision >= 0);
            int64_t lead = llround((double)bigint<base>::Base / (double)value.digits.back());
            decimal d(bigint<base>(lead), -ssize(value.digits));
            size_t cur = 2;
            decimal amend = decimal(1) - trunc(cur) * d;
            while(-amend.magnitude() < precision) {
                d += d * amend;
                cur = 2 * (1 - amend.magnitude());
                d = d.trunc(cur);
                amend = decimal(1) - trunc(cur) * d;
            }
            return d;
        }
    };

    template<base_v base>
    auto divmod_fast(bigint<base> const& a, int64_t b) {
        // Optimized divmod for small divisors that fit in int64_t
        if (b == 0) {
            assert(false && "Division by zero");
        }
        bool neg_a = a.negative;
        bool neg_b = b < 0;
        b = std::abs(b);
        
        bigint<base> quotient;
        uint64_t remainder = 0;

        auto n = ssize(a.digits);
        for (auto i = n - 1; i >= 0; i--) {
            __uint128_t val = (__uint128_t)remainder * bigint<base>::Base + a.digits[i];
            uint64_t q = uint64_t(val / b);
            remainder = uint64_t(val % b);
            quotient.digits.push_back(q);
        }
        std::ranges::reverse(quotient.digits);
        quotient.negative = (neg_a ^ neg_b);
        quotient.normalize();
        
        bigint<base> rem{int64_t(remainder)};
        rem.negative = neg_a;
        
        return std::pair{quotient, rem};
    }

    template<base_v base>
    auto divmod(bigint<base> const& a, bigint<base> const& b) {
        if (a < b) {
            return std::pair{bigint<base>(0), a};
        }
        // Use fast path if b fits in int64_t
        if (size(b.digits) == 1) {
            int64_t b_val = b.negative ? -int64_t(b.digits[0]) : int64_t(b.digits[0]);
            return divmod_fast(a, b_val);
        }
        // General case using decimal arithmetic
        auto A = decimal<base>(a);
        auto B = decimal<base>(b);
        auto d = (A * B.inv(A.magnitude() - B.magnitude() + 1)).round();
        auto r = a - d * b;
        if (r >= b) {
            d += 1;
            r -= b;
        }
        if (r < bigint<base>(0)) {
            d -= 1;
            r += b;
        }
        return std::pair{d, r};
    }
}


#ifndef CP_ALGO_MATH_DECIMAL_HPP
#define CP_ALGO_MATH_DECIMAL_HPP
#include "bigint.hpp"
#include <utility>
namespace cp_algo::math{template<base_v base=x10>struct decimal{bigint<base>value;int64_t scale;decimal(int64_t v=0,int64_t s=0):value(bigint<base>(v)),scale(s){}decimal(bigint<base>v,int64_t s=0):value(v),scale(s){}decimal&operator*=(const decimal&other){value*=other.value;scale+=other.scale;return*this;}decimal&operator+=(decimal const&other){if(scale<other.scale){value+=other.value.pad(other.scale-scale);}else{value.pad_inplace(scale-other.scale);value+=other.value;scale=other.scale;}return*this;}decimal&operator-=(decimal const&other){if(scale<other.scale){value-=other.value.pad(other.scale-scale);}else{value.pad_inplace(scale-other.scale);value-=other.value;scale=other.scale;}return*this;}decimal operator*(const decimal&other)const{return decimal(*this)*=other;}decimal operator+(const decimal&other)const{return decimal(*this)+=other;}decimal operator-(const decimal&other)const{return decimal(*this)-=other;}auto split()const{auto int_part=scale>=-ssize(value.digits)?value.top(ssize(value.digits)+scale):bigint<base>(0);auto frac_part=*this-decimal(int_part);return std::pair{int_part,frac_part};}void print(){auto[int_part,frac_part]=split();print_bigint(std::cout,int_part);if(frac_part.value!=bigint<base>(0)){std::cout<<'.';std::cout<<std::string(bigint<base>::digit_length*(-frac_part.magnitude()),'0');frac_part.value.negative=false;print_bigint<true>(std::cout,frac_part.value);}std::cout<<std::endl;}bigint<base>trunc()const{if(scale>=0){return value.pad(scale);}else if(-scale>=ssize(value.digits)){return 0;}else{return value.top(ssize(value.digits)+scale);}}bigint<base>round()const{if(scale>=0){return value.pad(scale);}else if(-scale>ssize(value.digits)){return 0;}else{auto res=value.top(ssize(value.digits)+scale);if(value.digits[-scale-1]*2>=bigint<base>::Base){res+=1;}return res;}}decimal trunc(size_t digits)const{digits=std::min(digits,size(value.digits));return decimal(value.top(digits),scale+ssize(value.digits)-digits);}auto magnitude()const{static constexpr int64_t inf=1e18;if(value.digits.empty())return-inf;return ssize(value.digits)+scale;}decimal inv(int64_t precision){assert(precision>=0);int64_t lead=llround((double)bigint<base>::Base/(double)value.digits.back());decimal d(bigint<base>(lead),-ssize(value.digits));size_t cur=2;decimal amend=decimal(1)-trunc(cur)*d;while(-amend.magnitude()<precision){d+=d*amend;cur=2*(1-amend.magnitude());d=d.trunc(cur);amend=decimal(1)-trunc(cur)*d;}return d;}};template<base_v base>auto divmod_fast(bigint<base>const&a,int64_t b){if(b==0){assert(false&&"Division by zero");}bool neg_a=a.negative;bool neg_b=b<0;b=std::abs(b);bigint<base>quotient;uint64_t remainder=0;auto n=ssize(a.digits);for(auto i=n-1;i>=0;i--){__uint128_t val=(__uint128_t)remainder*bigint<base>::Base+a.digits[i];uint64_t q=uint64_t(val/b);remainder=uint64_t(val%b);quotient.digits.push_back(q);}std::ranges::reverse(quotient.digits);quotient.negative=(neg_a^neg_b);quotient.normalize();bigint<base>rem{int64_t(remainder)};rem.negative=neg_a;return std::pair{quotient,rem};}template<base_v base>auto divmod(bigint<base>const&a,bigint<base>const&b){if(a<b){return std::pair{bigint<base>(0),a};}if(size(b.digits)==1){int64_t b_val=b.negative?-int64_t(b.digits[0]):int64_t(b.digits[0]);return divmod_fast(a,b_val);}auto A=decimal<base>(a);auto B=decimal<base>(b);auto d=(A*B.inv(A.magnitude()-B.magnitude()+1)).round();auto r=a-d*b;if(r>=b){d+=1;r-=b;}if(r<bigint<base>(0)){d-=1;r+=b;}return std::pair{d,r};}}
#endif
#line 1 "cp-algo/math/decimal.hpp"
#line 1 "cp-algo/math/bigint.hpp"
#line 1 "cp-algo/util/big_alloc.hpp"
#include <set>
#include <map>
#include <deque>
#include <stack>
#include <queue>
#include <vector>
#include <string>
#include <cstddef>
#include <iostream>
#include <generator>
#include <forward_list>
#if defined(__linux__) || defined(__unix__) || (defined(__APPLE__) && defined(__MACH__))
#  define CP_ALGO_USE_MMAP 1
#  include <sys/mman.h>
#else
#  define CP_ALGO_USE_MMAP 0
#endif
namespace cp_algo{template<typename T,size_t Align=32>class big_alloc{static_assert(Align>=alignof(void*),"Align must be at least pointer-size");static_assert(std::popcount(Align)==1,"Align must be a power of two");public:using value_type=T;template<class U>struct rebind{using other=big_alloc<U,Align>;};constexpr bool operator==(const big_alloc&)const=default;constexpr bool operator!=(const big_alloc&)const=default;big_alloc()noexcept=default;template<typename U,std::size_t A>big_alloc(const big_alloc<U,A>&)noexcept{}[[nodiscard]]T*allocate(std::size_t n){std::size_t padded=round_up(n*sizeof(T));std::size_t align=std::max<std::size_t>(alignof(T),Align);
#if CP_ALGO_USE_MMAP
if(padded>=MEGABYTE){void*raw=mmap(nullptr,padded,PROT_READ|PROT_WRITE,MAP_PRIVATE|MAP_ANONYMOUS,-1,0);madvise(raw,padded,MADV_HUGEPAGE);madvise(raw,padded,MADV_POPULATE_WRITE);return static_cast<T*>(raw);}
#endif
return static_cast<T*>(::operator new(padded,std::align_val_t(align)));}void deallocate(T*p,std::size_t n)noexcept{if(!p)return;std::size_t padded=round_up(n*sizeof(T));std::size_t align=std::max<std::size_t>(alignof(T),Align);
#if CP_ALGO_USE_MMAP
if(padded>=MEGABYTE){munmap(p,padded);return;}
#endif
::operator delete(p,padded,std::align_val_t(align));}private:static constexpr std::size_t MEGABYTE=1<<20;static constexpr std::size_t round_up(std::size_t x)noexcept{return(x+Align-1)/Align*Align;}};template<typename T>using big_vector=std::vector<T,big_alloc<T>>;template<typename T>using big_basic_string=std::basic_string<T,std::char_traits<T>,big_alloc<T>>;template<typename T>using big_deque=std::deque<T,big_alloc<T>>;template<typename T>using big_stack=std::stack<T,big_deque<T>>;template<typename T>using big_queue=std::queue<T,big_deque<T>>;template<typename T>using big_priority_queue=std::priority_queue<T,big_vector<T>>;template<typename T>using big_forward_list=std::forward_list<T,big_alloc<T>>;using big_string=big_basic_string<char>;template<typename Key,typename Value,typename Compare=std::less<Key>>using big_map=std::map<Key,Value,Compare,big_alloc<std::pair<const Key,Value>>>;template<typename T,typename Compare=std::less<T>>using big_multiset=std::multiset<T,Compare,big_alloc<T>>;template<typename T,typename Compare=std::less<T>>using big_set=std::set<T,Compare,big_alloc<T>>;template<typename Ref,typename V=void>using big_generator=std::generator<Ref,V,big_alloc<std::byte>>;}namespace std::ranges{template<typename Ref,typename V>elements_of(cp_algo::big_generator<Ref,V>&&)->elements_of<cp_algo::big_generator<Ref,V>&&,cp_algo::big_alloc<std::byte>>;}
#line 1 "cp-algo/math/fft_simple.hpp"
#line 1 "cp-algo/random/rng.hpp"
#include <chrono>
#include <random>
namespace cp_algo::random{std::mt19937_64 gen(std::chrono::steady_clock::now().time_since_epoch().count());uint64_t rng(){return gen();}}
#line 1 "cp-algo/math/common.hpp"
#include <functional>
#include <cstdint>
#include <cassert>
namespace cp_algo::math{
#ifdef CP_ALGO_MAXN
const int maxn=CP_ALGO_MAXN;
#else
const int maxn=1<<19;
#endif
const int magic=64;auto bpow(auto const&x,auto n,auto const&one,auto op){if(n==0){return one;}else{auto t=bpow(x,n/2,one,op);t=op(t,t);if(n%2){t=op(t,x);}return t;}}auto bpow(auto x,auto n,auto ans){return bpow(x,n,ans,std::multiplies{});}template<typename T>T bpow(T const&x,auto n){return bpow(x,n,T(1));}inline constexpr auto inv2(auto x){assert(x%2);std::make_unsigned_t<decltype(x)>y=1;while(y*x!=1){y*=2-x*y;}return y;}}
#line 1 "cp-algo/math/cvector.hpp"
#line 1 "cp-algo/util/simd.hpp"
#include <experimental/simd>
#line 6 "cp-algo/util/simd.hpp"
#include <memory>
#if defined(__x86_64__) && !defined(CP_ALGO_DISABLE_AVX2)
#define CP_ALGO_SIMD_AVX2_TARGET _Pragma("GCC target(\"avx2\")")
#else
#define CP_ALGO_SIMD_AVX2_TARGET
#endif
#define CP_ALGO_SIMD_PRAGMA_PUSH \
_Pragma("GCC push_options")\CP_ALGO_SIMD_AVX2_TARGETCP_ALGO_SIMD_PRAGMA_PUSHnamespace cp_algo{template<typename T,size_t len>using simd[[gnu::vector_size(len*sizeof(T))]]=T;using u64x8=simd<uint64_t,8>;using u32x16=simd<uint32_t,16>;using i64x4=simd<int64_t,4>;using u64x4=simd<uint64_t,4>;using u32x8=simd<uint32_t,8>;using u16x16=simd<uint16_t,16>;using i32x4=simd<int32_t,4>;using u32x4=simd<uint32_t,4>;using u16x8=simd<uint16_t,8>;using u16x4=simd<uint16_t,4>;using i16x4=simd<int16_t,4>;using u8x32=simd<uint8_t,32>;using u8x8=simd<uint8_t,8>;using u8x4=simd<uint8_t,4>;using dx4=simd<double,4>;inline dx4 abs(dx4 a){return dx4{std::abs(a[0]),std::abs(a[1]),std::abs(a[2]),std::abs(a[3])};}static constexpr dx4 magic=dx4()+(3ULL<<51);inline i64x4 lround(dx4 x){return i64x4(x+magic)-i64x4(magic);}inline dx4 to_double(i64x4 x){return dx4(x+i64x4(magic))-magic;}inline dx4 round(dx4 a){return dx4{std::nearbyint(a[0]),std::nearbyint(a[1]),std::nearbyint(a[2]),std::nearbyint(a[3])};}inline u64x4 low32(u64x4 x){return x&uint32_t(-1);}inline auto swap_bytes(auto x){return decltype(x)(__builtin_shufflevector(u32x8(x),u32x8(x),1,0,3,2,5,4,7,6));}inline u64x4 montgomery_reduce(u64x4 x,uint32_t mod,uint32_t imod){
#ifdef __AVX2__
auto x_ninv=u64x4(_mm256_mul_epu32(__m256i(x),__m256i()+imod));x+=u64x4(_mm256_mul_epu32(__m256i(x_ninv),__m256i()+mod));
#else
auto x_ninv=u64x4(u32x8(low32(x))*imod);x+=x_ninv*uint64_t(mod);
#endif
return swap_bytes(x);}inline u64x4 montgomery_mul(u64x4 x,u64x4 y,uint32_t mod,uint32_t imod){
#ifdef __AVX2__
return montgomery_reduce(u64x4(_mm256_mul_epu32(__m256i(x),__m256i(y))),mod,imod);
#else
return montgomery_reduce(x*y,mod,imod);
#endif
}inline u32x8 montgomery_mul(u32x8 x,u32x8 y,uint32_t mod,uint32_t imod){return u32x8(montgomery_mul(u64x4(x),u64x4(y),mod,imod))|u32x8(swap_bytes(montgomery_mul(u64x4(swap_bytes(x)),u64x4(swap_bytes(y)),mod,imod)));}inline dx4 rotate_right(dx4 x){static constexpr u64x4 shuffler={3,0,1,2};return __builtin_shuffle(x,shuffler);}template<std::size_t Align=32>inline bool is_aligned(const auto*p)noexcept{return(reinterpret_cast<std::uintptr_t>(p)%Align)==0;}template<class Target>inline Target&vector_cast(auto&&p){return*reinterpret_cast<Target*>(std::assume_aligned<alignof(Target)>(&p));}}
#pragma GCC pop_options
#line 1 "cp-algo/util/complex.hpp"
#line 4 "cp-algo/util/complex.hpp"
#include <cmath>
#include <type_traits>
#line 7 "cp-algo/util/complex.hpp"
CP_ALGO_SIMD_PRAGMA_PUSHnamespace cp_algo{template<typename T>struct complex{using value_type=T;T x,y;inline constexpr complex():x(),y(){}inline constexpr complex(T const&x):x(x),y(){}inline constexpr complex(T const&x,T const&y):x(x),y(y){}inline complex&operator*=(T const&t){x*=t;y*=t;return*this;}inline complex&operator/=(T const&t){x/=t;y/=t;return*this;}inline complex operator*(T const&t)const{return complex(*this)*=t;}inline complex operator/(T const&t)const{return complex(*this)/=t;}inline complex&operator+=(complex const&t){x+=t.x;y+=t.y;return*this;}inline complex&operator-=(complex const&t){x-=t.x;y-=t.y;return*this;}inline complex operator*(complex const&t)const{return{x*t.x-y*t.y,x*t.y+y*t.x};}inline complex operator/(complex const&t)const{return*this*t.conj()/t.norm();}inline complex operator+(complex const&t)const{return complex(*this)+=t;}inline complex operator-(complex const&t)const{return complex(*this)-=t;}inline complex&operator*=(complex const&t){return*this=*this*t;}inline complex&operator/=(complex const&t){return*this=*this/t;}inline complex operator-()const{return{-x,-y};}inline complex conj()const{return{x,-y};}inline T norm()const{return x*x+y*y;}inline T abs()const{return std::sqrt(norm());}inline T const real()const{return x;}inline T const imag()const{return y;}inline T&real(){return x;}inline T&imag(){return y;}inline static constexpr complex polar(T r,T theta){return{T(r*cos(theta)),T(r*sin(theta))};}inline auto operator<=>(complex const&t)const=default;};template<typename T>inline complex<T>conj(complex<T>const&x){return x.conj();}template<typename T>inline T norm(complex<T>const&x){return x.norm();}template<typename T>inline T abs(complex<T>const&x){return x.abs();}template<typename T>inline T&real(complex<T>&x){return x.real();}template<typename T>inline T&imag(complex<T>&x){return x.imag();}template<typename T>inline T const real(complex<T>const&x){return x.real();}template<typename T>inline T const imag(complex<T>const&x){return x.imag();}template<typename T>inline constexpr complex<T>polar(T r,T theta){return complex<T>::polar(r,theta);}template<typename T>inline std::ostream&operator<<(std::ostream&out,complex<T>const&x){return out<<x.real()<<' '<<x.imag();}}
#pragma GCC pop_options
#line 1 "cp-algo/util/checkpoint.hpp"
#line 8 "cp-algo/util/checkpoint.hpp"
namespace cp_algo{
#ifdef CP_ALGO_CHECKPOINT
big_map<big_string,double>checkpoints;double last;
#endif
template<bool final=false>void checkpoint([[maybe_unused]]auto const&_msg){
#ifdef CP_ALGO_CHECKPOINT
big_string msg=_msg;double now=(double)clock()/CLOCKS_PER_SEC;double delta=now-last;last=now;if(msg.size()&&!final){checkpoints[msg]+=delta;}if(final){for(auto const&[key,value]:checkpoints){std::cerr<<key<<": "<<value*1000<<" ms\n";}std::cerr<<"Total: "<<now*1000<<" ms\n";}
#endif
}template<bool final=false>void checkpoint(){checkpoint<final>("");}}
#line 7 "cp-algo/math/cvector.hpp"
#include <ranges>
#include <bit>
CP_ALGO_SIMD_PRAGMA_PUSHnamespace stdx=std::experimental;namespace cp_algo::math::fft{static constexpr size_t flen=4;using ftype=double;using vftype=dx4;using point=complex<ftype>;using vpoint=complex<vftype>;static constexpr vftype vz={};vpoint vi(vpoint const&r){return{-imag(r),real(r)};}struct cvector{big_vector<vpoint>r;cvector(size_t n){n=std::max(flen,std::bit_ceil(n));r.resize(n/flen);checkpoint("cvector create");}vpoint&at(size_t k){return r[k/flen];}vpoint at(size_t k)const{return r[k/flen];}template<class pt=point>inline void set(size_t k,pt const&t){if constexpr(std::is_same_v<pt,point>){real(r[k/flen])[k%flen]=real(t);imag(r[k/flen])[k%flen]=imag(t);}else{at(k)=t;}}template<class pt=point>inline pt get(size_t k)const{if constexpr(std::is_same_v<pt,point>){return{real(r[k/flen])[k%flen],imag(r[k/flen])[k%flen]};}else{return at(k);}}size_t size()const{return flen*r.size();}static constexpr size_t eval_arg(size_t n){if(n<pre_evals){return eval_args[n];}else{return eval_arg(n/2)|(n&1)<<(std::bit_width(n)-1);}}static constexpr point eval_point(size_t n){if(n%2){return-eval_point(n-1);}else if(n%4){return eval_point(n-2)*point(0,1);}else if(n/4<pre_evals){return evalp[n/4];}else{return polar<ftype>(1.,std::numbers::pi/(ftype)std::bit_floor(n)*(ftype)eval_arg(n));}}static constexpr std::array<point,32>roots=[](){std::array<point,32>res;for(size_t i=2;i<32;i++){res[i]=polar<ftype>(1.,std::numbers::pi/(1ull<<(i-2)));}return res;}();static constexpr point root(size_t n){return roots[std::bit_width(n)];}template<int step>static void exec_on_eval(size_t n,size_t k,auto&&callback){callback(k,root(4*step*n)*eval_point(step*k));}template<int step>static void exec_on_evals(size_t n,auto&&callback){point factor=root(4*step*n);for(size_t i=0;i<n;i++){callback(i,factor*eval_point(step*i));}}static void do_dot_iter(point rt,vpoint&Bv,vpoint const&Av,vpoint&res){res+=Av*Bv;real(Bv)=rotate_right(real(Bv));imag(Bv)=rotate_right(imag(Bv));auto x=real(Bv)[0],y=imag(Bv)[0];real(Bv)[0]=x*real(rt)-y*imag(rt);imag(Bv)[0]=x*imag(rt)+y*real(rt);}void dot(cvector const&t){size_t n=this->size();exec_on_evals<1>(n/flen,[&](size_t k,point rt)__attribute__((always_inline)){k*=flen;auto[Ax,Ay]=at(k);auto Bv=t.at(k);vpoint res=vz;for(size_t i=0;i<flen;i++){vpoint Av=vpoint(vz+Ax[i],vz+Ay[i]);do_dot_iter(rt,Bv,Av,res);}set(k,res);});checkpoint("dot");}template<bool partial=true>void ifft(){size_t n=size();if constexpr(!partial){point pi(0,1);exec_on_evals<4>(n/4,[&](size_t k,point rt)__attribute__((always_inline)){k*=4;point v1=conj(rt);point v2=v1*v1;point v3=v1*v2;auto A=get(k);auto B=get(k+1);auto C=get(k+2);auto D=get(k+3);set(k,(A+B)+(C+D));set(k+2,((A+B)-(C+D))*v2);set(k+1,((A-B)-pi*(C-D))*v1);set(k+3,((A-B)+pi*(C-D))*v3);});}bool parity=std::countr_zero(n)%2;if(parity){exec_on_evals<2>(n/(2*flen),[&](size_t k,point rt)__attribute__((always_inline)){k*=2*flen;vpoint cvrt={vz+real(rt),vz-imag(rt)};auto B=at(k)-at(k+flen);at(k)+=at(k+flen);at(k+flen)=B*cvrt;});}for(size_t leaf=3*flen;leaf<n;leaf+=4*flen){size_t level=std::countr_one(leaf+3);for(size_t lvl=4+parity;lvl<=level;lvl+=2){size_t i=(1<<lvl)/4;exec_on_eval<4>(n>>lvl,leaf>>lvl,[&](size_t k,point rt)__attribute__((always_inline)){k<<=lvl;vpoint v1={vz+real(rt),vz-imag(rt)};vpoint v2=v1*v1;vpoint v3=v1*v2;for(size_t j=k;j<k+i;j+=flen){auto A=at(j);auto B=at(j+i);auto C=at(j+2*i);auto D=at(j+3*i);at(j)=((A+B)+(C+D));at(j+2*i)=((A+B)-(C+D))*v2;at(j+i)=((A-B)-vi(C-D))*v1;at(j+3*i)=((A-B)+vi(C-D))*v3;}});}}checkpoint("ifft");for(size_t k=0;k<n;k+=flen){if constexpr(partial){set(k,get<vpoint>(k)/=vz+ftype(n/flen));}else{set(k,get<vpoint>(k)/=vz+ftype(n));}}}template<bool partial=true>void fft(){size_t n=size();bool parity=std::countr_zero(n)%2;for(size_t leaf=0;leaf<n;leaf+=4*flen){size_t level=std::countr_zero(n+leaf);level-=level%2!=parity;for(size_t lvl=level;lvl>=4;lvl-=2){size_t i=(1<<lvl)/4;exec_on_eval<4>(n>>lvl,leaf>>lvl,[&](size_t k,point rt)__attribute__((always_inline)){k<<=lvl;vpoint v1={vz+real(rt),vz+imag(rt)};vpoint v2=v1*v1;vpoint v3=v1*v2;for(size_t j=k;j<k+i;j+=flen){auto A=at(j);auto B=at(j+i)*v1;auto C=at(j+2*i)*v2;auto D=at(j+3*i)*v3;at(j)=(A+C)+(B+D);at(j+i)=(A+C)-(B+D);at(j+2*i)=(A-C)+vi(B-D);at(j+3*i)=(A-C)-vi(B-D);}});}}if(parity){exec_on_evals<2>(n/(2*flen),[&](size_t k,point rt)__attribute__((always_inline)){k*=2*flen;vpoint vrt={vz+real(rt),vz+imag(rt)};auto t=at(k+flen)*vrt;at(k+flen)=at(k)-t;at(k)+=t;});}if constexpr(!partial){point pi(0,1);exec_on_evals<4>(n/4,[&](size_t k,point rt)__attribute__((always_inline)){k*=4;point v1=rt;point v2=v1*v1;point v3=v1*v2;auto A=get(k);auto B=get(k+1)*v1;auto C=get(k+2)*v2;auto D=get(k+3)*v3;set(k,(A+C)+(B+D));set(k+1,(A+C)-(B+D));set(k+2,(A-C)+pi*(B-D));set(k+3,(A-C)-pi*(B-D));});}checkpoint("fft");}static constexpr size_t pre_evals=1<<16;static const std::array<size_t,pre_evals>eval_args;static const std::array<point,pre_evals>evalp;};const std::array<size_t,cvector::pre_evals>cvector::eval_args=[](){std::array<size_t,pre_evals>res={};for(size_t i=1;i<pre_evals;i++){res[i]=res[i>>1]|(i&1)<<(std::bit_width(i)-1);}return res;}();const std::array<point,cvector::pre_evals>cvector::evalp=[](){std::array<point,pre_evals>res={};res[0]=1;for(size_t n=1;n<pre_evals;n++){res[n]=polar<ftype>(1.,std::numbers::pi*ftype(eval_args[n])/ftype(4*std::bit_floor(n)));}return res;}();}
#pragma GCC pop_options
#line 6 "cp-algo/math/fft_simple.hpp"
CP_ALGO_SIMD_PRAGMA_PUSHnamespace cp_algo::math::fft{struct dft_simple{cp_algo::math::fft::cvector cv;dft_simple(auto const&a,size_t n):cv(n){for(size_t i=0;i<std::min(std::size(a),n);i++){real(cv.at(i))[i%4]=ftype(a[i]);imag(cv.at(i))[i%4]=ftype(i+n<std::size(a)?a[i+n]:0);}checkpoint("dft64 init");cv.fft();}void dot(dft_simple const&t){cv.dot(t.cv);}void recover_mod(auto&res,size_t k){cv.ifft();size_t n=cv.size();for(size_t i=0;i<std::min(k,n);i++){res[i]=llround(real(cv.get(i)));}for(size_t i=n;i<k;i++){res[i]=llround(imag(cv.get(i-n)));}cp_algo::checkpoint("recover mod");}};void conv_simple(auto&a,auto const&b){if(empty(a)||empty(b)){a.clear();return;}size_t n=a.size(),m=b.size();size_t N=std::max(flen,std::bit_ceil(n+m-1)/2);dft_simple A(a,N),B(b,N);A.dot(B);a.resize(n+m-1);A.recover_mod(a,n+m-1);}}
#pragma GCC pop_options
#line 5 "cp-algo/math/bigint.hpp"
#include <bits/stdc++.h>
namespace cp_algo::math{enum base_v{x10=uint64_t(1e16),x16=uint64_t(1ull<<60)};template<base_v base=x10>struct bigint{static constexpr uint64_t Base=uint64_t(base);static constexpr uint16_t digit_length=base==x10?16:15;static constexpr uint16_t sub_base=base==x10?10:16;static constexpr uint32_t meta_base=base==x10?uint32_t(1e4):uint32_t(1<<15);big_basic_string<uint64_t>digits;bool negative;auto operator<=>(bigint const&other)const{if(digits.empty()&&other.digits.empty()){return std::strong_ordering::equal;}if(digits.empty()){return other.negative?std::strong_ordering::greater:std::strong_ordering::less;}if(other.digits.empty()){return negative?std::strong_ordering::less:std::strong_ordering::greater;}if(negative!=other.negative){return negative?std::strong_ordering::less:std::strong_ordering::greater;}if(digits.size()!=other.digits.size()){auto size_cmp=digits.size()<=>other.digits.size();return negative?0<=>size_cmp:size_cmp;}for(auto i=ssize(digits)-1;i>=0;i--){auto digit_cmp=digits[i]<=>other.digits[i];if(digit_cmp!=std::strong_ordering::equal){return negative?0<=>digit_cmp:digit_cmp;}}return std::strong_ordering::equal;}bigint(){}bigint(big_basic_string<uint64_t>d,bool neg):digits(std::move(d)),negative(neg){normalize();}bigint&pad_inplace(size_t to_add){digits.insert(0,to_add,0);return normalize();}bigint&drop_inplace(size_t to_drop){digits.erase(0,std::min(to_drop,size(digits)));return normalize();}bigint&take_inplace(size_t to_keep){digits.erase(std::min(to_keep,size(digits)),std::string::npos);return normalize();}bigint&top_inplace(size_t to_keep){if(to_keep>=size(digits)){return pad_inplace(to_keep-size(digits));}else{return drop_inplace(size(digits)-to_keep);}}bigint pad(size_t to_add)const{return bigint{big_basic_string<uint64_t>(to_add,0)+digits,negative}.normalize();}bigint drop(size_t to_drop)const{return bigint{digits.substr(std::min(to_drop,size(digits))),negative}.normalize();}bigint take(size_t to_keep)const{return bigint{digits.substr(0,std::min(to_keep,size(digits))),negative}.normalize();}bigint top(size_t to_keep)const{if(to_keep>=size(digits)){return pad(to_keep-size(digits));}else{return drop(size(digits)-to_keep);}}bigint&normalize(){while(!empty(digits)&&digits.back()==0){digits.pop_back();}if(digits.empty()){negative=false;}return*this;}bigint&negate(){negative^=1;return*this;}bigint operator-(){return bigint(*this).negate();}bigint&operator-=(const bigint&other){if(negative!=other.negative){return(negate()+=other).negate().normalize();}digits.resize(std::max(size(digits),size(other.digits)));bool carry=false;auto d_ptr=std::assume_aligned<32>(digits.data());auto o_ptr=std::assume_aligned<32>(other.digits.data());size_t N=size(other.digits);size_t i=0;for(;i<N;i++){d_ptr[i]-=o_ptr[i]+carry;carry=d_ptr[i]>=base;d_ptr[i]+=carry?uint64_t(base):0;}if(carry){N=size(digits);for(;i<N&&d_ptr[i]==0;i++){d_ptr[i]=base-1;}if(i<N){d_ptr[i]--;}else{for(i=0;i<N;i++){d_ptr[i]=base-d_ptr[i]-1;}bool carry=true;for(i=0;i<N&&carry;i++){d_ptr[i]++;carry=d_ptr[i]>=base;d_ptr[i]-=carry*base;}negate();}}return normalize();}bigint&operator+=(const bigint&other){if(negative!=other.negative){return(negate()-=other).negate().normalize();}digits.resize(std::max(size(digits),size(other.digits)));bool carry=false;auto d_ptr=std::assume_aligned<32>(digits.data());auto o_ptr=std::assume_aligned<32>(other.digits.data());size_t N=size(other.digits);size_t i=0;for(;i<N;i++){d_ptr[i]+=o_ptr[i]+carry;carry=d_ptr[i]>=base;d_ptr[i]-=carry?uint64_t(base):0;}if(carry){N=size(digits);for(;i<N&&d_ptr[i]==uint64_t(base)-1;i++){d_ptr[i]=0;}if(i<N){d_ptr[i]++;}else{digits.push_back(1);}}return*this;}bigint(int64_t x){negative=x<0;x=negative?-x:x;digits=x?big_basic_string<uint64_t>{uint64_t(x)}:big_basic_string<uint64_t>{};}bigint(std::span<char>s):negative(false){if(size(s)<digit_length){int64_t val=0;std::from_chars(s.data(),s.data()+size(s),val,sub_base);*this=bigint(val);return;}if(!empty(s)&&s[0]=='-'){negative=true;s=s.subspan(1);}size_t len=size(s);assert(len>0);size_t num_digits=(len+digit_length-1)/digit_length;digits.resize(num_digits);size_t i=len;for(size_t j=0;j<num_digits-1;j++){std::from_chars(s.data()+i-digit_length,s.data()+i,digits[j],sub_base);i-=digit_length;}std::from_chars(s.data(),s.data()+i,digits.back(),sub_base);normalize();}bigint operator+(const bigint&other)const{return bigint(*this)+=other;}bigint operator-(const bigint&other)const{return bigint(*this)-=other;}void to_metabase(){auto N=ssize(digits);digits.resize(4*N);for(auto i=N-1;i>=0;i--){uint64_t val=digits[i];digits[4*i]=val%meta_base;val/=meta_base;digits[4*i+1]=val%meta_base;val/=meta_base;digits[4*i+2]=val%meta_base;val/=meta_base;digits[4*i+3]=val;}}void from_metabase(){auto N=(ssize(digits)+3)/4;digits.resize(4*N);uint64_t carry=0;for(int i=0;i<N;i++){__uint128_t val=digits[4*i+3];val=val*meta_base+digits[4*i+2];val=val*meta_base+digits[4*i+1];val=val*meta_base+digits[4*i];val+=carry;digits[i]=uint64_t(val%base);carry=uint64_t(val/base);}digits.resize(N);while(carry){digits.push_back(carry%base);carry/=base;}}bigint&operator*=(int64_t other){if(other<0){negative^=1;other=-other;}if(other==0){return*this=bigint(0);}else if(other==1){return*this;}uint64_t carry=0;for(auto&d:digits){__uint128_t val=__uint128_t(d)*other+carry;d=uint64_t(val%base);carry=uint64_t(val/base);}if(carry){digits.push_back(carry%base);carry/=base;}return*this;}bigint operator*(int64_t other)const{return bigint(*this)*=other;}friend bigint operator*(int64_t lhs,const bigint&rhs){return bigint(rhs)*=lhs;}bigint&mul_inplace(auto&&other){negative^=other.negative;auto n=size(digits),m=size(other.digits);if(n<m){std::swap(n,m);std::swap(digits,other.digits);}if(m<=1){return*this*=int64_t(m==0?0:other.digits[0]);}constexpr size_t SMALL_M_THRESHOLD=32;if(m<=SMALL_M_THRESHOLD){big_basic_string<uint64_t>res;res.assign(n+m,0);for(size_t i=0;i<n;i++){if(digits[i]==0)continue;uint64_t carry=0;for(size_t j=0;j<m;j++){__uint128_t cur=res[i+j]+(__uint128_t)digits[i]*other.digits[j]+carry;res[i+j]=uint64_t(cur%Base);carry=uint64_t(cur/Base);}size_t k=i+m;if(carry){uint64_t cur=res[k]+carry;res[k]=cur%Base;carry=cur/Base;k++;}}digits=std::move(res);return normalize();}to_metabase();other.to_metabase();fft::conv_simple(digits,other.digits);from_metabase();return normalize();}bigint&operator*=(bigint const&other){return mul_inplace(bigint(other));}bigint operator*(const bigint&other)const{return bigint(*this).mul_inplace(bigint(other));}};template<base_v base>decltype(std::cin)&operator>>(decltype(std::cin)&in,cp_algo::math::bigint<base>&x){std::string s;in>>s;x={s};return in;}template<base_v base,bool fill=true>auto&print_digit(auto&out,uint64_t d){char buf[16];auto[ptr,ec]=std::to_chars(buf,buf+sizeof(buf),d,bigint<base>::sub_base);if constexpr(base==x16){std::ranges::transform(buf,buf,toupper);}auto len=ptr-buf;if constexpr(fill){out<<std::string(bigint<base>::digit_length-len,'0');}return out<<std::string_view(buf,len);}template<bool fill_all=false,base_v base>auto&print_bigint(auto&out,cp_algo::math::bigint<base>const&x){if(x.negative){out<<'-';}if(empty(x.digits)){return print_digit<base,fill_all>(out,0);}print_digit<base,fill_all>(out,x.digits.back());for(auto d:x.digits|std::views::reverse|std::views::drop(1)){print_digit<base,true>(out,d);}return out;}template<base_v base>decltype(std::cout)&operator<<(decltype(std::cout)&out,cp_algo::math::bigint<base>const&x){return print_bigint(out,x);}}
#line 5 "cp-algo/math/decimal.hpp"
namespace cp_algo::math{template<base_v base=x10>struct decimal{bigint<base>value;int64_t scale;decimal(int64_t v=0,int64_t s=0):value(bigint<base>(v)),scale(s){}decimal(bigint<base>v,int64_t s=0):value(v),scale(s){}decimal&operator*=(const decimal&other){value*=other.value;scale+=other.scale;return*this;}decimal&operator+=(decimal const&other){if(scale<other.scale){value+=other.value.pad(other.scale-scale);}else{value.pad_inplace(scale-other.scale);value+=other.value;scale=other.scale;}return*this;}decimal&operator-=(decimal const&other){if(scale<other.scale){value-=other.value.pad(other.scale-scale);}else{value.pad_inplace(scale-other.scale);value-=other.value;scale=other.scale;}return*this;}decimal operator*(const decimal&other)const{return decimal(*this)*=other;}decimal operator+(const decimal&other)const{return decimal(*this)+=other;}decimal operator-(const decimal&other)const{return decimal(*this)-=other;}auto split()const{auto int_part=scale>=-ssize(value.digits)?value.top(ssize(value.digits)+scale):bigint<base>(0);auto frac_part=*this-decimal(int_part);return std::pair{int_part,frac_part};}void print(){auto[int_part,frac_part]=split();print_bigint(std::cout,int_part);if(frac_part.value!=bigint<base>(0)){std::cout<<'.';std::cout<<std::string(bigint<base>::digit_length*(-frac_part.magnitude()),'0');frac_part.value.negative=false;print_bigint<true>(std::cout,frac_part.value);}std::cout<<std::endl;}bigint<base>trunc()const{if(scale>=0){return value.pad(scale);}else if(-scale>=ssize(value.digits)){return 0;}else{return value.top(ssize(value.digits)+scale);}}bigint<base>round()const{if(scale>=0){return value.pad(scale);}else if(-scale>ssize(value.digits)){return 0;}else{auto res=value.top(ssize(value.digits)+scale);if(value.digits[-scale-1]*2>=bigint<base>::Base){res+=1;}return res;}}decimal trunc(size_t digits)const{digits=std::min(digits,size(value.digits));return decimal(value.top(digits),scale+ssize(value.digits)-digits);}auto magnitude()const{static constexpr int64_t inf=1e18;if(value.digits.empty())return-inf;return ssize(value.digits)+scale;}decimal inv(int64_t precision){assert(precision>=0);int64_t lead=llround((double)bigint<base>::Base/(double)value.digits.back());decimal d(bigint<base>(lead),-ssize(value.digits));size_t cur=2;decimal amend=decimal(1)-trunc(cur)*d;while(-amend.magnitude()<precision){d+=d*amend;cur=2*(1-amend.magnitude());d=d.trunc(cur);amend=decimal(1)-trunc(cur)*d;}return d;}};template<base_v base>auto divmod_fast(bigint<base>const&a,int64_t b){if(b==0){assert(false&&"Division by zero");}bool neg_a=a.negative;bool neg_b=b<0;b=std::abs(b);bigint<base>quotient;uint64_t remainder=0;auto n=ssize(a.digits);for(auto i=n-1;i>=0;i--){__uint128_t val=(__uint128_t)remainder*bigint<base>::Base+a.digits[i];uint64_t q=uint64_t(val/b);remainder=uint64_t(val%b);quotient.digits.push_back(q);}std::ranges::reverse(quotient.digits);quotient.negative=(neg_a^neg_b);quotient.normalize();bigint<base>rem{int64_t(remainder)};rem.negative=neg_a;return std::pair{quotient,rem};}template<base_v base>auto divmod(bigint<base>const&a,bigint<base>const&b){if(a<b){return std::pair{bigint<base>(0),a};}if(size(b.digits)==1){int64_t b_val=b.negative?-int64_t(b.digits[0]):int64_t(b.digits[0]);return divmod_fast(a,b_val);}auto A=decimal<base>(a);auto B=decimal<base>(b);auto d=(A*B.inv(A.magnitude()-B.magnitude()+1)).round();auto r=a-d*b;if(r>=b){d+=1;r-=b;}if(r<bigint<base>(0)){d-=1;r+=b;}return std::pair{d,r};}}
Back to top page